AWWA Webinar: Inland Desalination and Concentrate Management 9/9/2020

2

2020 WEBINAR SPONSORS

WEBINAR MODERATOR

Corinne Bertoia Engineer American Water Works Association

Corinne Bertoia is an Engineer at the American Water Works Association. Her responsibilities include reviewing and developing technical programs and supporting the Divisions and Committees of the Technical and Education Council. Corinne received her MASc. in Civil Engineering from the University of Toronto in 2018, where her research focused on the removal of NDMA precursors from drinking water biofilters.

4

ENHANCE YOUR WEBINAR EXPERIENCE

- Close
 - ✓ Email Programs
 - ✓ Instant messengers
 - ✓ Other programs not in use
- GoToWebinar Support

https://support.logmeininc.com/gotowebinar?labelid=4a17cd95

3

Please consider the environment before printing.

WEBINAR SURVEY

- · Immediately upon closing the webinar
 - ➤ Survey window opens
 - ≻ Thank you!

6

PRODUCTS OR SERVICES DISCLAIMER

The mention of specific products or services in this webinar does not represent AWWA endorsement, nor do the opinions expressed in it necessarily reflect the views of AWWA

AWWA does not endorse or approve products or services

PANEL OF EXPERTS

Charlie He Vice President, Chief Technologist – Decision Support Carollo Engineers, Inc.

Brent Alspach, PE, BCEE Director of Applied Research Arcadis

Dave Stewart, PhD, PE President Stewart Environmental Consulting Group, LLC

7

8

AGENDA

- I. Overview of M69 Inland Desalination and Concentrate Management
- II. Cost-Effective ZLD Technology for Desalination Concentrate Management
- III. Chapter 7 Regulatory, Safety, Operational and Environmental Issues

Charlie He

Brent Alspach

Dave Stewart, PhD, PE

8

ASK THE EXPERT

Charlie He Carollo Engineers, Inc.

Brent Alspach, PE, BCEE Arcadis

Dave Stewart, PhD, PE Stewart Environmental Consulting Group, LLC

Enter your **question** into the **question pane** on the right-hand side of the screen.

Please specify to whom you are addressing the question.

OVERVIEW OF M69 Inland Desalination and Concentrate Management

Charlie He Vice President, Chief Technologist – Decision Support Carollo Engineers, Inc.

10

LEARNING OBJECTIVES

- 1. Gain an in-depth understanding of water quality impacts on pretreatment requirements, membrane processes, and non-ZLD and ZLD concentrate management technologies and disposal options
- 2. Broaden knowledge basis and access to useful resources for implementing inland desalination and concentrate management facilities
- 3. Learn mitigation measures and tools for assessing, addressing, and communicating the regulatory issues and environmental concerns associated with these technologies
- Obtain guidance on available practices for reducing the energy consumption and treatment costs of inland desalination and concentrate management facilities

11

12

M69 - INLAND DESALINATION & CONCENTRATE MANAGEMENT

13

M69 - INLAND DESALINATION & CONCENTRATE MANAGEMENT - TABLE OF CONTENTS

- Chapter 1 Overview
- Chapter 2 Water Quality and Planning Strategies
- · Chapter 3 Brakish Water Desalination Technologies
- Chapter 4 Discharge Options for Concentrate Disposal
- Chapter 5 Enhanced Recovery and Zero Liquid Discharge
- Chapter 6 Cost of Desalination and Concentrate Management
- Chapter 7 Regulatory, Safety, Operational and Environmental Issues
- Chapter 8 Case Studies
- Chapter 9 Salt Recovery, Beneficial Uses and Technology Trends

14

M69

13

M69 - INLAND DESALINATION & CONCENTRATE **MANAGEMENT - ACKNOWLEDGING THE AUTHORS**

- Chapter 1: Inland Desalination Overview (Greg Wettereau and Mike Mickley)
- Chapter 2: Water Quality and Planning Strategies (Charlie He, Arun Subramani, Greg Wetterau, and Vasu Veerapaneni)
- Chapter 3: Brackish Water Desalination (Val S. Frenkel and Greg Wettereau)
- Chapter 4: Non ZLD Concentrate Disposal and Management (Rick Bond and Sandeep Sethi)
- Chapter 5: ZLD Concentrate Management (Brent Alspach and Graham Juby)
- Chapter 6: Cost of Treatment (J.T. Aguinaldo and Rick Bond)
- Chapter 7: Regulatory, Safety, Operational and Environmental Issues (Dave Stewart, Fred) Bloetscher, and Melanie Goetz)
- · Chapter 8: Case Studies (Howard E. Steiman and Qigang Chang,)
- Chapter 9: Salt Recovery, Beneficial Uses and Technological Trends (Ali Sharbat and Charlie He)

M69 - INLAND DESALINATION & CONCENTRATE **MANAGEMENT - ACKNOWLEDGING REVIEWERS**

Steering Committee

- Q. He, Carollo Engineers, Phoenix, Ariz.
- R.G. Bond, Black & Veatch, Kansas City, Mo.
- D.R. Stewart, Stewart Environ. Consultants, Fort Collins, Colo. S.D.N. Freeman, Black & Veatch, Kansas City, Mo.
- S. Sethi, Carollo Engineers, Sarasota, Fla.
- S.D.N. Freeman, Black & Veatch, Kansas City, Mo.
- V.S. Frenkel, Greeley and Hansen, San Francisco, Calif.
- S.A. Bach, American Water Works Association, Denver, Colo.
- A. Gerling, American Water Works Association, Denver, Colo.

Reviewers

- · W.R. Everest, W.R. Everest & Associates, Orange, Calif.
- E. Kasirga, Fairfax, Va.
- · N. Voutchkov, Water Globe Consultants, LLC, Winter Springs, Fla.
- S. Walker, UTEP Civil Engineering, El Paso, Tex.

Chair: Charlie He, Carollo Engineers Vice-Chair: Rick Bond, B&V (retired) 15

Please consider the environment before printing.

Cumulative number and capacity of US municipal desalination plants (Mickley 2018)

17

18

17

CHAPTER 1 – OVERVIEW OF INLAND DESALINATION

Concentrate disposal options for US municipal desalination plants (Mickley 2018)

CHAPTER 2 – WATER QUALITY AND PLANNING STRATEGIES

19

NO COOKIE CUTTER BUT TOOLS ARE AVAILABLE TO HELP UTILITIES MANAGE SALINITY (CHAPTER 2 CONTINUED)

Salt Balance and Decision Support Tools

20

CHAPTER 3 – BRACKISH WATER DESALINATION TECHNOLOGIES

21

21

CHAPTER 3 KEY TOPICS (CHAPTER 3 CONTINUED)

	RO	EDR
Basics of Process	TFC, Osmotic, Efficiency	Stacks, Ion exchange membrane, Spacer
Membrane Characteristics	NF vs. RO, Spiral Wound, Array, Stage	ED vs. EDR, Electrical and Hydraulic Stages
Design Considerations	Recovery, Flux Balancing, Energy Recovery	Current Density and Polarization, Current Leakage, Current Efficiency, Polarity Reversal
Operation and Safety	Integrity Monitoring, Chemical Cleaning, Safety	Off Spec, Electrode Stream Recycle, Chemical Cleaning, Stack Repair, Safety
Pretreatment	Cartridge Filters, Sand, Iron / Mn, Integrated membrane system	Turbidity, Iron, Manganese, Hydrogen Sulfide, Chlorine
Post-treatment	pH adjustment,	stabilization, disinfection
		2

22

CHAPTER 4 – DISCHARGE OPTIONS FOR CONCENTRATE DISPOSAL

Disposal and Discharge Options

- · Discharge to surface water
- · Discharge to sewer or brine-line
- · Deep-well injection
- · Evaporation ponds
- · Enhanced evaporation systems
- Irrigation

Deep injection well

Evaporation ponds

Halophyte Wetlands

Enhanced Evaporation

23

23

CHAPTER 5 – ENHANCED RECOVERY AND ZERO LIQUID DISCHARGE

24

CHAPTER 6 – COST OF DESALINATION AND CONCENTRATE MANAGEMENT

Capacity in mod	MF/UF Train	Unit Cost
Capacity in figu	COSI	(a/gpu)
0.5	\$ 400,000	\$ 0.8
1.0	\$ 700,000	\$ 0.7
2.0	\$1,200,000	\$ 0.6
3.0	\$1,500,000	\$ 0.5
5.0	\$2,000,000	\$ 0.4
7.5	\$2,850,000	\$ 0.38
10.0	\$3,700,000	\$ 0.36

Typical MF/UF construction cost • 2014 ENR CCI = 10,732

25

26

Capacity, mgd	NF/RO Train Cost	Unit Cost (\$/gpd)
0.50	\$600,000	\$ 1.20
0.75	\$860,000	\$ 1.15
1.0	\$1,100,000	\$ 1.10
1.5	\$1,500,000	\$ 1.00
2.0	\$1,800,000	\$ 0.90
3.0	\$2,400,000	\$ 0.80
5.0	\$3,500,000	\$ 0.70
7.5	\$4,950,000	\$ 0.66
10.0	\$6.250.000	\$0.65

Typical brackish water NF/RO membrane construction cost* • 2014 ENR CCI = 10,732

Highlight Key Contents

- Example capital costs for
 - MF/UF
 - NF/RO
 - Solids contact clarifier
 - Pelletized softening
 - Brine concentrator and crystallizer
 - Deep well injection
 - Evap pond

- O&M Costs
 - Power
 - Chemical
 - Membrane replacement
 - Labor
 - Solids

25

CHAPTER 7 – REGULATORY, SAFETY, OPERATIONAL AND ENVIRONMENTAL ISSUES

Federal Regulations wrt Inland Desalination

Federal Regulations

Clean Water Act (Discharge to surface waters) Safe Drinking Water Act Resource Conservation and Recovery Act (Solid Waste) Comprehensive Environmental Response, Compensation and Liability Act (Superfund) TENROMS – radioactive particles

State Regulations

- Texas Colorado
- California
- **Toxicity Issues**

Public Participation and Outreach

26

Please consider the environment before printing.

CHAPTER 8 – CASE STUDIES

Facility	Owner	Concentrate Management Approach
Ocotillo Brine Reduction Facility	Intel Corporation, Chandler, Ariz.	Zero liquid discharge utilizing softening for enhanced recovery with a brine concentrator and evaporation ponds
Water Treatment Plant No. 2	City of Palm Coast, Fla.	Zero liquid discharge using lime and soda ash softening and recycling
Fort Irwin, Calif.	US Army	Deep-well injection
City of Fargo Wastewater Effluent Reuse	City of Fargo, N.Dak.	Surface water discharge
Kay Bailey Hutchison Brackish Groundwater Desalination Plant	El Paso Water Utilities, El Paso, Tex.	Current: deep-well injection; future: enhanced concentrate recovery through recovery of saleable minerals employing treatment processes such as softening, nanofiltration, and electrodialysis
Confidential, Calif.	Confidential, Calif.	Zero liquid discharge using brine concentrator and evaporation ponds
Laguna County Sanitation District, Santa Maria, Calif.	Laguna County Sanitation District	Concentrate volume minimization and deep-well injection
Chino II	Chino Basin Desalter Authority, Calif.	Enhanced concentrate recovery and brine line disposal

27

CHAPTER 9 – SALT RECOVERY, BENEFICIAL USES AND TECHNOLOGY TRENDS

Key Trends Discussed:

- Innovation in membrane technology
- Innovative system design and operation
- Innovative processes
- Improvements in energy efficiency
- Improved salt recovery and beneficial uses of concentrate

New NF/RO Membranes

- m-phenylenediamine (MPD) and trimesoyl chloride (TMC)
- Mixed matrix membranes (MMM)
- Nano-modified membranes Ion selective EDR membranes Carbon nanotubes Biomimetic membranes

29

CHAPTER 9 – SALT RECOVERY, BENEFICIAL USES AND TECHNOLOGY TRENDS

Key Trends Discussed:

- Innovation in membrane technology
- Innovative system design and operation <
- Innovative processes
- Improvements in energy efficiency
- Improved salt recovery and beneficial uses of concentrate

- Innovations in Membrane Scaling Monitoring
- Reversible RO Configuration
- Closed-circuit Desalination Process
- Advancement in Reverse Osmosis Membrane Cleaning

CHAPTER 9 – SALT RECOVERY, BENEFICIAL USES AND TECHNOLOGY TRENDS

Key Trends Discussed:

- Innovation in membrane technology
- Innovative system design and operation
- Innovative processes
- Improvements in energy efficiency
- Improved salt recovery and beneficial uses of concentrate

- Vortex-based Anti-fouling Membrane System
- Electrodialysis Metathesis
- Thermo-ionic Technology
- AquaSel[™]
- Adsorption Desalination
- Customized hybrid systems

31

CHAPTER 9 – SALT RECOVERY, BENEFICIAL USES AND TECHNOLOGY TRENDS

Key Trends Discussed:

- Innovation in membrane technology
- Innovative system design and operation
- Innovative processes
- Improvements in energy efficiency
- Improved salt recovery and beneficial uses of concentrate

- Energy Recovery Devices
- Hybridization of Desalination and Power Plants
- Use of Renewable Energy

CHAPTER 9 – SALT RECOVERY, BENEFICIAL USES AND TECHNOLOGY TRENDS

Key Trends Discussed:

- Innovation in membrane technology
- Innovative system design and operation
- Innovative processes
- Improvements in energy efficiency
- Improved salt recovery and beneficial uses of concentrate

- Pelletized Lime Softening Process
- SAL-PROCTM Process
- Selective Salt Recovery Techniques
- Advanced Solar Dryer Process
- Advanced Solar Dryer Process
- Other Chemical Precipitation
 Processes
- Biological Precipitation Process
- Recoverable Salts

33

SUMMARY

- Inland concentrate management practice undertook a fast growth period and became more and more "tried and true"
- · First Manual on Inland Desalination and Concentrate Management coming soon
- A wide range of issues, technologies, tools presented in depth, along with useful flow charts, example costs, case studies
- Equip utilities with "all you need to know" on implementing inland desalt and concentrate management

ASK THE EXPERT

Charlie He Carollo Engineers, Inc.

Brent Alspach, PE, BCEE Arcadis

Dave Stewart, PhD, PE Stewart Environmental Consulting Group, LLC

35

Enter your **question** into the **question pane** on the right-hand side of the screen.

Please specify to whom you are addressing the question.

36

Cost-Effective ZLD Technology for Desalination Concentrate Management

> Brent Alspach, PE BCEE Director of Applied Research Arcadis

> > September 9, 2020

ZLD Defined

As defined in this work:

- Applied to <u>desalination</u> residuals
 - Could also apply to conventional treatment residuals handling
 - Literature can be vague
- Assumed ~100% recovery
 - Not "near" ZLD (NZLD)
 - Solid slurry discharge transported offsite for beneficial use or disposal
- Not a boutique process
 - Not limited to certain concentrate water quality characteristics
 - Applicable virtually anywhere

→ "Conventional" ZLD

Conventional ZLD Concept

39

39

Conventional ZLD Concept

40

Conventional ZLD Concept

41

Conventional ZLD Concept

42

Conventional ZLD Concept

43

44

43

44

Please consider the environment before printing.

Brine Concentrators

45

Brine Concentrators

What You Need to Know

- Utilize mechanical vapor compression (thermal) technology
- Pretreatment is important

Process / Additive	Purpose
Acid	Prevent scaling; convert bicarbonate to carbon dioxide
Deaeration	Strip carbon dioxide to prevent corrosion
CaSO ₄ Crystals	Introduce precipitation nuclei to prevent surface scaling
Scale Inhibitor	Prevent scaling / maintain efficient heat transfer

46

46

Brine Concentrators

What You Need to Know

- · Utilize mechanical vapor compression (thermal) technology
- · Pretreatment is important

47

Brine Concentrators

What You Need to Know

- · Utilize mechanical vapor compression (thermal) technology
- · Pretreatment is important
- Distillate (treated water) TDS < 10 mg/L
- Brine TDS ≈ 180,000 250,000 mg/L
 - Maximum TDS = f(scaling potential)
 - May achieve up to ~300,000 mg/L with softening pretreatment
- Specific energy requirements ≈ 60 90 kWh/kgal distillate
 - Higher specific energy requirements for higher degrees of concentration
 - Assumes the use of electric (grid) power (i.e., no waste heat)

48

47

Brine Concentrators

Disadvantages

- System complexity
- · Minimal institutional operations knowledge / experience
- Responds slowly to flow changes \rightarrow equalization storage required
- Requires a source of steam for start-up, including after every maintenance event
 - Dedicated boiler
 - Other on-site stream generating process
- Aesthetics

50

Crystallizers

Crystallizers

What You Need to Know

- Utilize mechanical vapor compression (thermal) technology
- · Pretreatment for scale control is not used
- Distillate (treated water) TDS ≈ 30 50 mg/L
- · Centrifuges are used to dewater the solid slurry residuals
- Specific energy requirements ≈ 180 250 kWh/kgal distillate
 - Higher specific energy requirements for more highly soluble species (e.g., higher concentrations of nitrate salts)
 - Assumes the use of electric (grid) power (i.e., no waste heat)

52

Please consider the environment before printing.

Crystallizers

Disadvantages

- · System complexity
- · Minimal institutional operations knowledge / experience
- Responds slowly to flow changes \rightarrow equalization storage required
- Requires a source of steam for start-up, including after every maintenance event
 - Dedicated boiler
 - Other on-site stream generating process
- Aesthetics

53

Crystallizers

Disadvantages

- System complexity
- Minimal institutional operations knowledge / experience
- Responds slowly to flow changes → equalization storage required Same disadvantages
- Requires a sources of the concentrators of the every maintenance event
 - Dedicated boiler
 - Other on-site stream generating process
- Aesthetics

54

Please consider the environment before printing.

53

54

The Influence of Energy

Desalination Costs Hinge on Energy!

Desalination Process Specific Energy Comparison							
Process	Specific Energy (kWh/kgal)	Specific Energy Ratio ¹					
Seawater Desalination	10 - 15	1					
Brine Concentrators	60 - 90	4x - 9x					
Crystallizers	180 - 250	12x - 25x					

1 Relative to seawater desalination

56

56

Examples of ZLD Cost

Sample ZLD Treatment Cost Summary ¹							
Case	Capacity ² (MGD)	Capital Cost (\$/gpd)	O&M Cost (\$/kgal)	Amortized Cost ³ (\$/kgal)			
ZLD-1	1	\$41.11	\$19.11	\$29.12			
ZLD-2	0.5	\$56.77	\$20.29	\$34.25			
ZLD-3	0.25	\$86.13	\$23.67	\$44.24			
ZLD-4	0.125	\$133.11	\$28.07	\$59.87			

1 USBR Desalination and Water Purification Research and Development Program, Report No. 149 (Juby et al. 2008)

2 Assumes 100 percent recovery (i.e., ZLD feed flow = ZLD treated water flow)

3 Amortization over 20 years at a 6 percent annual interest rate

58

Examples of ZLD Cost

Sample ZLD Treatment Cost Summary ¹							
Case	Capacity² (MGD)	Capital Cost (\$/gpd)	O&M Cost (\$/kgal)	Amortized Cost ³ (\$/kgal)			
ZLD-1	1	\$41.11	\$19.11	\$29.12			
ZLD-2	Carlsbac	SWRO Costs:	\$20.29	\$34.25			
ZLD-3	_{0.25} ~ \$6 -	\$7 per kgal	\$23.67	\$44.24			
ZLD-4	0.125	\$133.11	\$28.07	\$59.87			

1 USBR Desalination and Water Purification Research and Development Program, Report No. 149 (Juby et al. 2008)

2 Assumes 100 percent recovery (i.e., ZLD feed flow = ZLD treated water flow)

3 Amortization over 20 years at a 6 percent annual interest rate

57

Examples of ZLD Cost

Sample ZLD Treatment Cost Summary ¹							
Case	Capacity² (MGD)	Capital Cost (\$/gpd)	O&M Cost (\$/kgal)	Amortized Cost ³ (\$/kgal)			
ZLD-1	1	\$41.11	\$19.11	\$29.12			
ZLD-2	0.5 What about k	\$56.77	\$20.29	\$34.25			
ZLD-3	0.25	\$86.13	\$23.67	\$44.24			
ZLD-4	0.125	\$133.11	\$28.07	\$59.87			

1 USBR Desalination and Water Purification Research and Development Program, Report No. 149 (Juby et al. 2008)

2 Assumes 100 percent recovery (i.e., ZLD feed flow = ZLD treated water flow)

3 Amortization over 20 years at a 6 percent annual interest rate

Examples of BWRO Cost

Sample RO Treatment Cost Summary @ 80% Recovery								
Case		Capacity (MGD)		Capital Cost ¹	O&M Cost ¹	Amortized Cost ²		
	Feed	Perm.	Conc.	(\$/gpd)	(\$/kgal) (\$/kgal	(\$/kgal)		
RO-1	5	4	1	\$0.58	\$0.30	\$0.44		
RO-2	2.5	2	0.5	\$0.80	\$0.40	\$0.59		
RO-3	1.25	1	0.25	\$1.11	\$0.60	\$0.87		
RO-4	0.625	0.5	0.125	\$1.54	\$0.70	\$1.07		

1 Adapted from Bergman and Elarde, 2003 (escalated to 2008 dollars)

2 Amortization over 20 years at a 6 percent annual interest rate

59

Examples of BWRO Cost

Sample RO Treatment Cost Summary @ 80% Recovery							
Case		Capacity (MGD)		Capital Cost ¹	O&M Cost ¹	Amortized Cost ²	
	Feed	Perm.	Conc.	(\$/gpd)	(\$/kgal)	(\$/kgal)	
RO-1	5	4	1	\$0.58	\$0.30	\$0.44	
RO-2	2.5	Costs	of BWR() are ;0.80	\$0.40	\$0.59	
RO-3	~ 1.25	1-2 orde lowe	rs of ma r than Zi	gnitude LD. ^{\$1.11}	\$0.60	\$0.87	
RO-4	0.625	0.5	0.125	\$1.54	\$0.70	\$1.07	

1 Adapted from Bergman and Elarde, 2003 (escalated to 2008 dollars)

2 Amortization over 20 years at a 6 percent annual interest rate

Examples of BWRO Cost

Sample RO Treatment Cost Summary @ 80% Recovery								
Case		Capacity (MGD)		Capital Cost ¹	O&M Cost ¹	Amortized Cost ²		
	Feed	Perm.	Conc.	(\$/gpd)	(\$/kgal)	(\$/kgal)		
RO-1	5	4	1	\$0.58	\$0.30	\$0.44		
RO-2	2.5	2	0.5	\$0.80	\$0.40	\$0.59		
RO-3	Is this	s an equ	itable co	omparison?	\$0.60	\$0.87		
	1.20		0.20	ψι:II	ψ0.00	<i>40.07</i>		
RO-4	0.625	0.5	0.125	\$1.54	\$0.70	\$1.07		

1 Adapted from Bergman and Elarde, 2003 (escalated to 2008 dollars)

2 Amortization over 20 years at a 6 percent annual interest rate

61

Normal Normalization...?

Comparison in Isolation

- RO: Normalized for permeate flow
- ZLD: Normalized for distillate flow

Real-World Facility (Example)

- Inland location
- Utilizes BWRO for primary desalination
- Employs ZLD for concentrate management

Normal Normalization...?

Comparison in Isolation

- RO: Normalized for permeate flow
- ZLD: Normalized for distillate flow

Real-World Facility (Example)

- Inland location
- Utilizes BWRO for primary desalination
- Employs ZLD for concentrate management

ProperTotal Cost (RO + ZLD)NormalizationTotal Desalinated Water Flow (RO + ZLD)

64

63

Examples of BWRO Cost (Review)

Sample RO Treatment Cost Summary @ 80% Recovery									
Case		Capacity (MGD)		Capital Cost ¹	O&M Cost ¹	Amortized Cost ²			
	Feed	Perm.	Conc.	(\$/gpd)	(\$/kgal)	(\$/kgal)			
RO-1	5	4	1	\$0.58	\$0.30	\$0.44			
RO-2	2.5	2	0.5	\$0.80	\$0.40	\$0.59			
RO-3	1.25	1	0.25	\$1.11	\$0.60	\$0.87			
RO-4	0.625	0.5	0.125	\$1.54	\$0.70	\$1.07			

1 Adapted from Bergman and Elarde, 2003 (escalated to 2008 dollars)

2 Amortization over 20 years at a 6 percent annual interest rate

65

66

65

Examples of BWRO Cost (Review)

Sample RO Treatment Cost Summary @ 80% Recovery									
Case		Capacity (MGD)		Capital Cost ¹	O&M Cost ¹	Amortized Cost ²			
	Feed	Perm.	Conc.	(\$/gpd)	(\$/kgal)	(\$/kgal)			
RO-1	5	4	1	\$0.58	\$0.30	\$0.44			
RO-2	2.5	2	0.5	\$0.80	\$0.40	\$0.59			
RO-3	1.25	1	0.25	\$1.11	\$0.60	\$0.87			
RO-4	0.625	0.5	0.125	\$1.54	\$0.70	\$1.07			

1 Adapted from Bergman and Elarde, 2003 (escalated to 2008 dollars)

2 Amortization over 20 years at a 6 percent annual interest rate

Examples of ZLD Cost (Review)

Sample ZLD Treatment Cost Summary ¹								
Case	Capacity² (MGD)	Capital Cost (\$/gpd)	O&M Cost (\$/kgal)	Amortized Cost ³ (\$/kgal)				
ZLD-1	1	\$41.11	\$19.11	\$29.12				
ZLD-2	0.5	\$56.77	\$20.29	\$34.25				
ZLD-3	0.25	\$86.13	\$23.67	\$44.24				
ZLD-4	0.125	\$133.11	\$28.07	\$59.87				

1 USBR Desalination and Water Purification Research and Development Program, Report No. 149 (Juby et al. 2008)

2 Assumes 100 percent recovery (i.e., ZLD feed flow = ZLD treated water flow)

3 Amortization over 20 years at a 6 percent annual interest rate

Examples of ZLD Cost (Review)

Sample ZLD Treatment Cost Summary ¹								
Case	Capacity ² (MGD)	Capital Cost (\$/gpd)	O&M Cost (\$/kgal)	Amortized Cost ³ (\$/kgal)				
ZLD-1	1	\$41.11	\$19.11	\$29.12				
ZLD-2	0.5	\$56.77	\$20.29	\$34.25				
ZLD-3	0.25	\$86.13	\$23.67	\$44.24				
ZLD-4	0.125	\$133.11	\$28.07	\$59.87				

1 USBR Desalination and Water Purification Research and Development Program, Report No. 149 (Juby et al. 2008)

2 Assumes 100 percent recovery (i.e., ZLD feed flow = ZLD treated water flow)

3 Amortization over 20 years at a 6 percent annual interest rate

67

Sample RO + ZLD Treatment Cost Summary @ 80% RO Recovery									
	RO System		ZLD System		RO + ZLD Treatment				
Case	Permeate Flow (MGD)	Amort. Cost (\$/kgal)	Distillate Flow (MGD)	Amort. Cost (\$/kgal)	Total Desal Flow (MGD)	Amort. Cost (\$/kgal)			
RO-1 → ZLD-1	4	\$0.44	1	\$29.12	5	\$6.18			
RO-2 → ZLD-2	2	\$0.59	0.5	\$34.25	2.5	\$7.32			
$RO-3 \rightarrow ZLD-3$	1	\$0.87	0.25	\$44.24	1.25	\$9.54			
RO-4 \rightarrow ZLD-4	0.5	\$1.07	0.125	\$59.87	0.625	\$12.83			

69

70

Examples of BWRO + ZLD Cost

Sample RO + ZLD Treatment Cost Summary @ 80% RO Recovery								
	RO System		ZLD System		RO + ZLD Treatment			
Case	Permeate Flow (MGD)	Amort. Cost (\$/kgal)	Distillate Flow (MGD)	Amort. Cost (\$/kgal)	Total Desal Flow (MGD)	Amort. Cost (\$/kgal)		
RO-1 → ZLD-1	4	\$0.44	1	\$29.12	5	\$6.18		
RO-2 → ZLD-2		sbad SWR	O Costs:	\$34.25	2.5	\$7.32		
RO-3 → ZLD-3	1~	\$6 _{\$0} \$7 pe	er kgal	\$44.24	1.25	\$9.54		
RO-4 → ZLD-4	0.5	\$1.07	0.125	\$59.87	0.625	\$12.83		

70

Sample RO + ZLD Treatment Cost Summary @ 80% RO Recovery								
	RO System		ZLD System		RO + ZLD Treatment			
Case	Permeate Flow (MGD)	Amort. Cost (\$/kgal)	Distillate Flow (MGD)	Amort. Cost (\$/kgal)	Total Desal Flow (MGD)	Amort. Cost (\$/kgal)		
RO-1 → ZLD-1	4	\$0.44	1	\$29.12	5	\$6.18		
RO-2 → ZLD-2	2	\$0.59	0.5	\$34.25	2.5	\$7.32		
RO-3 → ZLD-3	1	ucn cios \$0.87	0.25	\$44.24	1.25	\$9.54		
RO-4 → ZLD-4	0.5	\$1.07	0.125	\$59.87	0.625	\$12.83		

71

Examples of BWRO + ZLD Cost

Sample RO + ZLD Treatment Cost Summary @ 80% RO Recovery								
	RO System		ZLD System		RO + ZLD Treatment			
Case	Permeate Flow (MGD)	Amort. Cost (\$/kgal)	Distillate Flow (MGD)	Amort. Cost (\$/kgal)	Total Desal Flow (MGD)	Amort. Cost (\$/kgal)		
RO-1 → ZLD-1	4	\$0.44	1	\$29.12	5	\$6.18		
RO-2 → ZLD-2	2	\$0.59	0.5	\$34.25	2.5	\$7.32		
RO-3 → ZLD-3	1	\$0.87	0.25	\$44.24	1.25	\$9.54		
RO-4 → ZLD-4	0.5	\$1.07	0.125	\$59.87	0.625	\$12.83		

72

71

Sample RO + ZLD Treatment Cost Summary @ 80% RO Recovery

What about 90% RO recovery?

73

73

74

Connecting the Cases

Cases for 80% RO Recovery								
RO Case	Feed Flow (MGD)	Permeate Flow (MGD)	Concentrate Flow (MGD)	ZLD Case				
RO-1	5	4	1	ZLD-1				
RO-2	2.5	2	0.5	ZLD-2				
RO-3	1.25	1	0.25	ZLD-3				
RO-4	0.625	0.5	0.125	ZLD-4				

74

٨.

Connecting the Cases

Cases for 90% RO Recovery									
RO Case	Feed Flow (MGD)	Permeate Flow (MGD)	Concentrate Flow (MGD)	ZLD Case					
RO-1A	5	4.5	0.5						
RO-2A	2.5	2.25	0.25						
RO-3A	1.25	1.125	0.125						
RO-4A	0.625	0.5625	0.0625						

75

76

75

Connecting the Cases

Cases for 90% RO Recovery									
RO Case	Feed Flow (MGD)	Permeate Flow (MGD)	Concentrate Flow (MGD)	ZLD Case					
RO-1A	5	4.5	0.5						
RO-2A	2.5	2.25	0.25						
RO-3A	1.25	1.125	0.125						
RO-4A	0.625	0.5625	0.0625						

Same feed flow... but with systems designed to achieve 90% recovery.

76

Please consider the environment before printing.

Connecting the Cases

Cases for 90% RO Recovery									
RO Case	Feed Flow (MGD)	Permeate Flow (MGD)	Concentrate Flow (MGD)	ZLD Case					
RO-1A	5	4.5	0.5	ZLD-2					
RO-2A	2.5	2.25	0.25	ZLD-3					
RO-3A	1.25	1.125	0.125	ZLD-4					
RO-4A	0.625	0.5625	0.0625	NA					

77

78

77

Connecting the Cases

Cases for 90% RO Recovery						
RO Case	Feed Flow (MGD)	Concentrate Flow (MGD)	ZLD Case			
RO-1A	5	4.5	0.5	ZLD-2		
RO-2A	2.5	2.25	0.25	ZLD-3		
RO-3A	1.25	1.125	0.125	ZLD-4		
RO-4A	0.625	0.5625	0.0625	NA		

Companion ZLD cases for all but the lowest capacity system

78

Please consider the environment before printing.

Connecting the Cases

Cases for 90% RO Recovery						
RO Case	Feed Flow (MGD)	Permeate Flow (MGD)	Concentrate Flow (MGD)	ZLD Case		
RO-1A	5	4.5	0.5	ZLD-2		
RO-2A	2.5	2.25	0.25	ZLD-3		
RO-3A	1.25	1.125	0.125	ZLD-4		
RO-4A	0.625	0.5625	0.0625	NA		

USBR Report No. 149 does not have a ZLD case study for this flow.

79

79

80

Connecting the Cases

Cases for 90% RO Recovery						
RO Case	Feed Flow (MGD)	Permeate Flow (MGD)	Concentrate Flow (MGD)	ZLD Case		
RO-1A	5	4.5	0.5	ZLD-2		
RO-2A	2.5	2.25	0.25	ZLD-3		
RO-3A	1.25	1.125	0.125	ZLD-4		
RO-4A	0.625	0.5625	0.0625			

Eliminate this case.

80

٨.

Examples of BWRO Cost

Sample RO Treatment Cost Summary @ 90% Recovery							
Case	Capacity (MGD)		Capital Cost ¹	O&M Cost ¹	Amortized Cost ²		
	Feed	Perm.	Conc.	(\$/gpd)	(\$/kgal)	(\$/kgal)	
RO-1A	5	4.5	0.5	\$0.55	\$0.25	\$0.38	
RO-2A	2.5	2.25	0.25	\$0.76	\$0.35	\$0.53	
RO-3A	1.25	1.125	0.125	\$1.05	\$0.60	\$0.85	

1 Adapted from Bergman and Elarde, 2003 (escalated to 2008 dollars)

2 Amortization over 20 years at a 6 percent annual interest rate

81

81

Examples of BWRO + ZLD Cost

Sample RO + ZLD Treatment Cost Summary @ 90% RO Recovery						
	RO Sj	ystem	ZLD S	ZLD System RO + ZLD Treatmer		
Case	Permeate Flow (MGD)	Amort. Cost (\$/kgal)	Distillate Flow (MGD)	Amort. Cost (\$/kgal)	Total Desal Flow (MGD)	Amort. Cost (\$/kgal)
RO-1A → ZLD-2	4.5	\$0.38	0.5	\$34.25	5	\$3.77
RO-2A \rightarrow ZLD-3	2.25	\$0.53	0.25	\$44.24	2.5	\$4.90
RO-3A → ZLD-4	1.125	\$0.85	0.125	\$59.87	1.25	\$6.75

82

Please consider the environment before printing.

Sample RO + ZLD Treatment Cost Summary @ 90% RO Recovery						
	RO Sj	RO System		ZLD System RO + ZLD Treatme		
Case	Permeate Flow (MGD)	Amort. Cost (\$/kgal)	Distillate Flow (MGD)	Amort. Cost (\$/kgal)	Total Desal Flow (MGD)	Amort. Cost (\$/kgal)
RO-1A → ZLD-2	4.5	\$0.38	0.5	\$34.25	5	\$3.77
RO-2A → ZLD-3	2.25	\$0.53	0.25	\$44.24	2.5	\$4.90
RO-3A → ZLD-4	1.125	\$0.85	0.125	\$59.87	1.25	\$6.75

83

84

83

The Influence of Recovery

Comparison of RO + ZLD Cost @ 80% vs. 90% RO Recovery						
80% RO Reco		overy	90% RO Reco	overy		
Water Capacity¹ (MGD)	Case	Amort. Cost² (\$/kgal)	Case	Amort. Cost² (\$/kgal)	Unit Cost Reduction	
5	RO-1 → ZLD-1	\$6.18	RO-1A → ZLD-2	\$3.77	39%	
2.5	RO-2 \rightarrow ZLD-2	\$7.32	RO-2A → ZLD-3	\$4.90	33%	
1.25	$RO-3 \rightarrow ZLD-3$	\$9.54	RO-3A → ZLD-4	\$6.75	29%	

1 Assumes 100 percent recovery (i.e., ZLD feed flow = ZLD treated water flow)

2 Amortization over 20 years at a 6 percent annual interest rate

The Influence of Recovery

Comparison of RO + ZLD Cost @ 80% vs. 90% RO Recovery						
80% RO Reco		overy	90% RO Recovery			
Water Capacity ¹ (MGD)	Case	Amort. Cost² (\$/kgal)	Case	Amort. Cost ² (\$/kgal)		
5	RO-1 → ZLD-1	\$6.18	RO-1A \rightarrow ZLD-2	\$3.77	39%	
2.5	RO-2 \rightarrow ZLD-2	\$7.32	RO-2A \rightarrow ZLD-3	\$4.90	33%	
1.25	RO-3 \rightarrow ZLD-3	\$9.54	RO-3A → ZLD-4	\$6.75	29%	

1 Assumes 100 percent recovery (i.e., ZLD feed flow = ZLD treated water flow)

2 Amortization over 20 years at a 6 percent annual interest rate

85

86

85

The Influence of Recovery

Co	Comparison of RO + ZLD Cost @ 80% vs. 90% RO Recovery						
Treated	80% RO Reco		overy 90% RO Recove				
Water Capacity ¹ (MGD)	Case	Amort. Cost² (\$/kgal)	Case	Amort. Cost² (\$/kgal)	Unit Cost Reduction		
5	RO-1 → ZLD-1	\$6.18	RO-1A → ZLD-2	\$3.77	39%		
2.5	RO-2 \rightarrow ZLD-2	\$7.32	RO-2A → ZLD-3	\$4.90	33%		
1.25	RO-3 \rightarrow ZLD-3	\$9.54	RO-3A → ZLD-4	\$6.75	29%		

1 Assumes 100 percent recovery (i.e., ZLD feed flow = ZLD treated water flow)

2 Amortization over 20 years at a 6 percent annual interest rate

The Influence of Recovery

Comparison of RO + ZLD Cost @ 80% vs. 90% RO Recovery						
Treated	80% RO Reco	overy	90% RO Reco			
Water Capacity ¹ (MGD)	Case	Amort. Cost² (\$/kgal)	Case	Amort. Cost² (\$/kgal)	Unit Cost Reduction	
5	RO-1 → ZLD-1	\$6.18	RO-1A \rightarrow ZLD-2	\$3.77	39%	
2.5	RO-2 → ZLD-2	\$7.32	RO-2A \rightarrow ZLD-3	\$4.90	33%	
1.25	RO-3 \rightarrow ZLD-3	\$9.54	RO-3A → ZLD-4	\$6.75	29%	

1 Assumes 100 percent recovery (i.e., ZLD feed flow = ZLD treated water flow)

2 Amortization over 20 years at a 6 percent annual interest rate

ZLD Cost Strategy

Optimizing RO + ZLD System Economy

- 1. Maximize primary RO recovery
 - ZLD exerts substantial influence on system costs.
 - Minimizing proportional ZLD flow yields lower unit costs.
- 2. Maximize RO + ZLD system size (within budget)
 - ZLD economies of scale are significant.
 - Unit cost of desal water is much lower for larger systems.

88

89

Key Messages

90

90

Please consider the environment before printing.

AWWA Webinar: Inland Desalination and Concentrate Management 9/9/2020

Key Messages

...but it offers several critical advantages that broadly enhance the viability of desalination.

91

91

92

Key Messages

ZLD Advantages

 Feasible deployment virtually independent of concentrate water quality

 Lack of environmental and regulatory permitting constraints that inhibit many other concentrate management options

 Overall costs (including primary RO + ZLD) that are roughly comparable to seawater desalination

Key Messages

ZLD Advantages

Virtual elimination of the problem of desalination concentrate...

93

Key Messages

ZLD Advantages

...albeit at high cost...

94

Please consider the environment before printing.

93

94

Key Messages

ZLD Advantages

Brent Alspach Arcadis brent.alspach@arcadis.com (760) 602-3828

96

96

ASK THE EXPERT

Charlie He Carollo Engineers, Inc.

Brent Alspach, PE, BCEE Arcadis

Dave Stewart, PhD, PE Stewart Environmental Consulting Group, LLC

97

Enter your **question** into the **question pane** on the right-hand side of the screen.

Please specify to whom you are addressing the question.

Stewart Environmental Consulting Group, LLC Engineering for Life

CHAPTER 7 – REGULATORY, SAFETY, OPERATIONAL AND ENVIRONMENTAL ISSUES

David R Stewart, PhD, PE President Stewart Environmental Consulting Group, LLC

99

PURPOSE

- Discussion of the regulatory issues for inland desalination
 - Federal
 - State
 - Local
 - Concentrate disposal
 - Anti degradation rules
 - Salt Content
 - Need for alternative disposal methods
 - Deep well injection
 - Site restrictions
 - Treatment of brine steams (covered in other talks)
- Understanding these issues will allow for more efficient planning and implementation of the water treatment plant

100

LEARNING OBJECTIVES

101

102

- Provide for a logic progression through the permitting process
- Understand the constraints of the inland desalination due to regulations that might affect design of the process
- Potentially avoid large issues associated with the design and regulatory constraints
- Plan for differences between each state
- Communication of different processes to the public for acceptance

101

FEDERAL REGULATIONS

- Clean Water Act (Discharge to surface waters)
- Safe Drinking Water Act
- Resource Conservation and Recovery Act (Solid Waste)
- Comprehensive Environmental Response, Compensation and Liability Act (Superfund)
- TENROMS radioactive particles

103

FEDERAL REGULATIONS WRT INLAND DESALINATION

- Regulations interact with different media at the same facility
- Need to be aware of these differences and it is the responsibility of the utility to identify and classify their different wastes

104

FORMS OF WASTE TO BE MANAGED

- Brine concentrates
- Spent membrane cleaning solutions
- · Conditioning chemicals
- Sludges and solid wastes from operations
 - Raw water will dictate most of the regulatory concerns regarding disposal

105

CLEAN WATER ACT

- Individual permit State dependent very long lead time – changing conditions – selenium example – mixing possible
- Statewide permit meet the discharge standards at discharge point – standards are set with statewide permit – example of Colorado and the Produced Water Discharge permit system
- WET Testing organisms are very sensitive to salt concentrations - acute and chronic testing

106

Please consider the environment before printing.

SAFE DRINKING WATER ACT

- Injection wells typically Class I wells Class V wells are possible
- Underground Source for Drinking Water (USDW) classified as less than 10,000 mg/l
- Permits are difficult to obtain but sometimes is the only way to dispose of the brine – 6 to 9 months
- · Caution with potential for earthquake activity

Class I injection well schematic (number of casing stages varies)

107

RESOURCE CONSERVATION AND RECOVERY ACT (HAZ WASTE)

- 40 CFR 257 to 270
- · 40 CFR 261 waste characterization
- · Two types of wastes
 - Listed waste discarded wastes
 - Characteristic waste ignitable, corrosive, reactive, TCLP testing
- Disposal at landfills landfill restrictions like TNORM

108

TNORM – TECHNICALLY ENHANCED NATURALLY OCCURRING RADIOACTIVE WASTE

- Testing for radium 226 and 228 and other radioactive materials
 - Gross alpha and beta
 - Strontium 90
 - Tritium
 - Uranium
- · State testing requirements
- · Subtitle D landfills
- · Stabilization of wastes

** LDR Treatment Standards also apply. Check with the state Radiation Program to determine the pro disposal methods for waste containing radionuclides and hazardous waste.

109

TNORM CONTINUED – IDENTIFICATION FLOW CHART

STATE REGULATIONS

• Examples

- Texas
 - TCEQ evaporation ponds and linings

111

- Colorado
 - Injection well limitations earthquakes
- California
 - Coastal water discharges
 - · Land applications
- Toxicity issues

112

Please consider the environment before printing.

SOME STATES REQUIRE WATER RIGHTS

- · Colorado example
 - Fresh water cost verses brackish water
 - Cost of Raw water \$110,000 per AF (perpetual supply)
 - Cost of Brackish water \$10,000 per AF (Augmentation Water)
 - Cost savings to project using brackish water (90% of the cost of raw water)
 - For 500 homes \$1.1M verse \$100,000
 - Depending on location of groundwater
 - · Ease of infrastructure installation
 - Stream is "made whole" at the wastewater plant plus consumptive use water augmentation
 - Consumptive use water and augmentation plans are worked out through the court system in Colorado
 - Savings due to raw water was 75% over freshwater

113

Please consider the environment before printing.

PUBLIC PARTICIPATION AND OUTREACH

- · Recognize the problem
- · Public risk and explanations
- · Level of involvement
- Communication after implementation of the solution

116

SUMMARY

- · Regulatory issues can dictate the process
- Beware of issues regarding brine disposal, TENORM
- Water rights can be used to the advantage of the brackish water system design
- Communication with the public is critical to obtain local approvals

116

ASK THE EXPERT

Charlie He Carollo Engineers, Inc.

Brent Alspach, PE, BCEE Arcadis

Dave Stewart, PhD, PE Stewart Environmental Consulting Group, LLC

Enter your **question** into the **question pane** on the right-hand side of the screen.

Please specify to whom you are addressing the question.

117

ADDITIONAL RESOURCES

- Desalination Resource Community
- Water Resources Planning and Sustainability Resource Community

M69 Inland Desalination & Concentrate Management AWWA catalog no: 30069

M61 Desalination of Seawater AWWA catalog no: 30061

UPCOMING WEBINARS

Sept 15: FREE Webinar from AVEVA: Simple Cloud-based Strategies for Managing Asset Performance

Sept 16: FREE Webinar: Smart Water 2020: Building a Resilient Water Future Sept 29: FREE Webinar from UMS: Metering Without a Hitch

Register for a 2020 Webinar Bundle

View the full 2020 schedule at awwa.org/webinars

September 23 & 24, 2020

119

Connect virtually to exchange knowledge and collaborate during this world-class event full of innovative and educational content – all delivered to your home or office.

Sponsorship opportunities are available.

SAVE YOUR SPOT! awwa.org/AWWAvirtualsummit

120

Please consider the environment before printing.

THANK YOU FOR JOINING TODAY'S WEBINAR

- As part of your registration, you are entitled to an additional 30-day archive access of today's program.
- Until next time, keep the water safe and secure.

121

PRESENTER BIOGRAPHY INFORMATION

Charlie (Qun) He, a vice president and chief technologist with Carollo, has more than 19 years of experience in water and wastewater treatment, water quality, and water resources. Mr. He has extensive experience in water and wastewater treatment, with an expertise in developing and optimizing treatment strategies for complex industrial wastewater treatment. He has gained experienced working with semiconductor, data center, mining, chemical, power, textile, food and beverage, and manufacturing industries. He leads the company's integrated decision support system team and is leading the research and development of Blue Plan-it® Decision Support System, an advanced water and wastewater system simulation and optimization tool. He is Carollo's membrane desalination and concentrate management expert for the southwest region and one of the R&D Innovation Lead for the Carollo's Research Group. He is the chair of AVWA Manual of Practice 69 – Inland Desalination and Concentrate Management and the vice chair of the AWWA Joint Research Committee. In addition, Mr. He is a LEED AP and has gained extensive exposure to the field of sustainability.

Brent Alspach holds both Bachelor and Master of Science degrees in Civil and Environmental Engineering from Cornell University in Ithaca, NY. Mr. Alspach joined Arcadis in 1997 and currently serves as Director of Applied Research. He the Chair of the AWWA Water Quality and Technology Division and is the immediate past President of the American Membrane Technology Association (AMTA).

122

Dr. David Stewart is President and CEO of Stewart Environmental Consultants Consulting Group, LLC in Fort Collins, Colorado. Dr. Stewart holds a PhD in Environmental Engineering, a Master of Business Administration, and a BS in Civil Engineering from Colorado State University, as well as a Master's in Environmental Engineering from the University of Arizona. Dr. Stewart has done permitting and regulatory compliance for water and wastewater systems for over 40 years. Dr Stewart is involved in several RO-ZLD projects at this time and is obtaining all of the necessary permits for the project. He also is an adjunct professor at Colorado State University.

CE CREDITS (CEUS) AND PROFESSIONAL DEVELOPMENT HOURS (PDHS)

AWWA awards webinar attendees CEUs.

If you viewed this webinar live, you will receive a certificate through the AWWA account associated with the email address you used to register.

If you viewed this webinar through a group registration, contact your proctor to log your participation.

If you viewed this as an archive webinar, follow the directions included in your archive webinar email to log your participation.

Certificates will be available on your AWWA account within 30 days of the webinar

HOW TO PRINT YOUR CERTIFICATE OF COMPLETION

Within 30 days of the webinar, login to **www.awwa.org** or register on the website. If you are having problems, please email educationservices@awwa.org

Once logged in, go to:

- My Account (click on your name in the top right corner)
- My Transcripts
 - To print your official transcript, click Print list
 - To print individual certificates, click Download Certificate

2020 WEBINAR SPONSORS

M.E. SIMPSON Co., Inc. The next-generation technology for AGING WATER INFRASTRUCTURE

125

Please consider the environment before printing.