

Billie Emas

is a Sales Associate at the American Water Works Association.

Billie Emas is the Sales Associate to the NE and SE territories in the Sales Department at AWWA. She has been with AWWA for six months and she has been corresponding and building relationships with the members, advertisers, exhibitors and sponsors with AWWA. She has over 20 years of experience marketing, sales, event planning and membership. Billie has a BS in Business Administration from Bowling Green State University.

Presenters

Travis Scurlock

Water Resources Senior Lead Operator, Parker Water & Sanitation District (303) 841-4627 tscurlock@pwsd.org

Carlos Williams

Applications Development Manager – Hach 970.663.1377 x2181 cawiilia@hach.com

Jacob Stephani

Technical Coordinator – Soldier Canyon Water Treatment Authority (970) 482-3143 <u>istephani@soldiercanyon.com</u>

Greg Fleck

Global Product Manager – Hach 970.663.1377 x2353 greg.fleck@hach.com

Dr Vadim Malkov

Principal Product Applications Manager – Hach +1 970 663 1377 x2689 vmalkov@hach.com

What is Log Removal Value (LRV)?

Log Removal refers to removal cryptosporidium, giardia, and viruses. This is expressed in log powers of 10 which can be converted easily to percentages

Count the 9's	Log 2	99%		
Each 9 = 1 log removal credit	Log 3	99.9%		
	Log 4	99.99%		

Many municipalities require different levels of log removal for cryptosporidium, giardia, and viruses

How do we calculate our LRV?

Removal = Filtration

(e.g Giardia, Cryptosporidium, viruses)

Inactivation = **Disinfection**

(e.g. Giardia, Cryptosporidium, viruses)

Removal + Inactivation = System Log Removal Credits

HACH

HACH

Carlos Williams

Applications Development Manager – Hach 970.663.1377 x2181 cawillia@hach.com

11

Please consider the environment before printing

13

Sample Calculation - CT

Determine Giardia CT₉₉₉ from CT Table given Temperature = 0.5°C, pH = 6 s.u., Free chlorine residual = 0.8 mg/L

	Chlorine			Temp	erature <=	• 0.5°C ┥			
	Conc.	•			рН				
	(mg/L)	<=6.0	6.5	7	7.5	8	8.5	9	CT _{99,9} = 145 minutes•mg/l
	<=0.4	137	163	195	237	277	329	390	
	0.6	141	168	200	239	286	342	407	
-	0.8	145	172	205	246	295	354	422	
	1.0	148	176	210	253	304	365	437	
tep	3-B: Ca	alculate	Giardia	lamblia	Log Ina	octivatio	n		•

Giardia Log Inactivation = 3 log × (CT_{CALC} / CT_{99.9})

Be Right

Log Removal / Inactivation

Log Removal	Initial Quantity (%)	Removal (%)	Amount Removed (%)	What's left (%)
1	100	90	90	10
2	10	90	9	1
3	1	90	0.9	0.1
4	0.1	90	0.09	0.01
5	0.01	90	0.009	0.001

	All values in tables A: 3 Log CT (CT _{99.9}) Values for Cardial Cysts by fr Control Control Control Control Control Control Control Control Control Control <t< th=""><th>Instates ingl. 'ese chalonsie Pril Pril 125 125 126 127 128 129 <td< th=""></td<></th></t<>	Instates ingl. 'ese chalonsie Pril Pril 125 125 126 127 128 129 <td< th=""></td<>
CT Tables	Chlorine Conc. (mg/L) Temperature <= 0.5°C	Temperature = 10°C pH
		73 88 104 125 149 177 209
		75 90 107 128 153 183 218
	14 55 67 78 14 17 18 18 17 18 18 17 18<	0 0
	Temperature pH °C 4-9 10 0.5 12 90 5 8 60 0 6 45 15 4 30 9 54/L12004/teg/lowner approximation 90 55	rhviol Gideno Maruei. Li profiling pat
	20 3 22 25 2 15	HACH
		Be Right™

Potential options are:

- 1. Texas TCEQ approach
- 2. California IPR approach (12/10/10 log removals for virus/Crypto/Giardia)
- 3. the use of an Expert Pane

Regulations are Clear for Indirect Potable Reuse in California

Pathogen Removal from Raw Sewage to Potable Water

- 12-log Virus (99.9999999999)
- 10-log Giardia
- 10-log Cryptosporidium

Water Quality

- Maximum TOC of 0.5 mg/L of wastewater origin
- Maximum TN 10 mg/L
- Advanced oxidation for direct injection projects – 0.5-log 1,4dioxane

Other Public Health Protection for the rest of the country

Pathogens Criteria

Choose pathogen control criteria for DPR.

Chemicals Criteria:

Tier 1: Meet water MCLs

Tier 2: Monitoring could be required for unregulated chemicals (including CECs)

Tier 3: Surrogates or unregulated chemicals that are useful for evaluating treatment

Be Right"

Example Pathogen Log Reduction Credits (Potable water reuse example)

Process	Monitoring	Log Reduction Credits			
		v	G	С	
Secondary treatment	Study needed	0 - 1.9	0 - 0.8	0 - 1.2	
MF or UF	Daily PDT	0 ^a	4.0	4.0	
RO	Online EC	1.5	1.5	1.5	
UV-AOP	Intensity sensors	6	6	6	
ESP with free chlorine, CL_2 ,	Online Cl ₂	6	3	0	
Total		13.5	14.5	11.5	
			HACH		

18

Please consider the environment before printing

Parker Water & Sanitation District Experience

Travis Scurlock

Water Resources Senior Lead Operator Rueter-Hess Water Purification Facility Parker Water & Sanitation

District, Parker, CO

RUETER-HESS RESERVOIR

COMPLETED 2012 CAPACITY 75, 689 ACRE FEET DAM HEIGHT 196 FEET DAM LENGTH 7, 710 FEET MAXIMUM WATER DEPTH 188 FEET

ParkerWater

Be Right^{***}

Population served: 56,000 Demand: Winter 3.5 MGD/Summer- 22 MGD Treatment plant capacity: 10 MGD Groundwater Well capacity: 26 MGD

Supplied by Rueter-Hess Reservoir

- ✓ 75000 Ac/ft capacity
- 164 ft total depth
- ✓ 1200 surface acres

Reservoir water is a blend of water from Cherry Creek, alluvial wells, and tertiary treated effluent from PWSD water reclamation facility.

21

Achieving the LRV – Front End

The treatment begins with a Source Water Monitoring Panel on the raw water

- Accelerated sedimentation (Actiflo Turbo)
- Secondary ballasted sand process (Actiflo Carb)
- Exceptional TOC removal

Achieving the LRV - Filtration

The 4-log virus inactivation by disinfection

- Pre-oxidation
- Post-chlorination

Filtration by ceramic membranes:

- ✓ 3-log Giardia
- ✓ 3-log Cryptosporidium

HACH Be Right

Achieving the LRV - Disinfection

Pre-oxidation:

- Permanganate
- Chlorine Dioxide
- Pre-Chlorination (Free Chlorine

Post-chlorination:

- The chlorine is monitored at the combined filter effluent (CFE) for appropriate concentration before entering the DCB.
- Minimum of 0.55 mg/L free chlorine residual must be maintained at exit from disinfection contact basin (DCB).

Originally used a Hach CLF10:

 Varying pH and iron fouling caused inaccurate readings and extra maintenance
Replaced it with a CL17

Achieving the LRV - Turbidity

Turbidity compliance point at the CFE

Originally monitored with Hach FT660sc turbidimeters

Tested new TU5400sc turbidimeter

25

Achieving the LRV - Turbidity

Turbidity compliance point at the CFE

Originally monitored with Hach FT660sc turbidimeters

Tested new TU5400sc turbidimeter

26

Please consider the environment before printing

Achieving the LRV – Turbidity & Chloramination

31

Treatment process and disinfection credit

Disinfection

Pre-Clearwell residual is monitored in two locations:

- End of the CFE channel where the water enters the pipe leading to the Clearwell Tanks: CL17 in the Laboratory
- Right before entering the Clearwell Tanks: CL17 + beta CL17sc

Post-Clearwell residual: CL17 and CL10

 Both measure the residual existing in the Clearwell Tanks and entering the Distribution system

33

Chlorine Analysis

PRE CLEARWEL	
NT01 PRE CW TURB (LAB) NT02 PRE CW TURB (SS) PRE CW CL2 (LAB) PRE CW CL2 (LAB) PRE CW CL2 (LPS) PRE CW PH PRE CW TEMP S. TUBE CLARIFIER CL02 SED BASIN PLATES CL02	0.013 NTU 0.015 NTU 1.93 mG/L 8.22 Units 7.47 °C 0.000 mG/L 0.139 mG/L
POST CLEARWE	LL
POST CW TURB	0.016 NTU
POST CW CL2	1.31 mG/L
POST CWOH	8.19 Units
POST OV AL	35.73 mal

All four chlorine analyzers tied into SCADA

- two Pre-Clearwell
- two Post-Clearwell

R701	R901	R902	
Pre CW CL2 mg/l	Post CW CL2 mg/l Min	Post CW CL2 mg/I Min	
1.73	1.26	1.25	
1.84	1.25	1.25	SS NTU
2.02	1.25	1.24	0.017
1.42	1.25	1.25	
1.82	1.26	1.25	
1.65	1.25	1.25	Lab NTU
2.02	1.26	1.24	0.017
1.63	1.26	1.24	
1.86	1.25	1.24	
1.69	1.25	1.24	Min C/2
1.65	1.25	1.24	122
1.69	1.25	1.23	
1.53	1.25	1.23	
1.79	1.24	1.23	

Great value of redundancy

- Robust automated compliance reporting
- No need for manual sampling if an analyzer goes down

35

Daily Calculation of Log-Reduction Credits for *Giardia lamblia* and Viruses

Enter Baffling Factor for Stage 1:
Enter Baffling Factor for Stage 2:
Enter Baffling Factor for Stage 3:

System Characteristics and Log-Reduction Credits for: Soldier Canyon Filter Plant

Day	Treatment Stage	Disinfectant	Residual Conc. (mg/L)	рН	Temp. (Celsius)	Peak Flow (GPM)	Vol. Min. (gal)	Vol. Eff. (gal)	T10 (min)	CT Actual	Log-Reduction (Giardia)	Log-Reduction (viruses)
1	Headworks	Chlorine Dioxide	0.30	7.66	4.4	11,035	3,660	2,562.0	0.2	0.1	0.01	1.66
	Floc Influent	Chlorine Dioxide	0.05	7.66	4.4	11,035	52,762	5,276.2	0.5	0.0	0.01	1.66
	Floc Basin	Chlorine Dioxide	0.05	7.66	4.4	11,035	537,124	268,562.0	24.3	1.2	0.11	1.73
	Sed Basin	Chlorine Dioxide	0.05	7.66	4.4	11,035	381,480	114,444.0	10.4	0.5	0.05	1.69
	Pipe to Clearwell	Free Chlorine	1.32	8.44	4.9	11,035	24,748	17,323.6	1.6	2.1	0.02	0.86
	Clearwell	Free Chlorine	1.20	8.21	4.9	11,035	5,605,006	560,500.6	50.8	61.0	72	22
	System TOTAL										0.93	36.81
2	Headworks	Chlorine Dioxide	0.28	7.59	4.3	11,000	3,660	2,562.0	0.2	0.1	.01	.66
	Floc Influent	Chlorine Dioxide	0.05	7.59	4.3	11,000	52,762	5,276.2	0.5	0.0	0.01	1.66
	Floc Basin	Chlorine Dioxide	0.05	7.59	4.3	11,000	537,124	268,562.0	24.4	1.2	0.11	1.73
	Sed Basin	Chlorine Dioxide	0.05	7.59	4.3	11,000	381,480	114,444.0	10.4	0.5	0.05	1.69
	Pipe to Clearwell	Free Chlorine	1.41	8.62	4.5	11,000	24,748	17,323.6	1.6	2.2	0.02	0.90
	Clearwell	Free Chlorine	1.24	8.24	4.5	11,000	5,953,528	595,352.8	54.1	67.1	76	
	System TOTAL										0.97	38.91
											$ \rightarrow $	

Model developed for EPA based on Montana DEQ Model and AWWA's *Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources*

January 2020

Impacts on Log-Reduction

Better Solution to Manage Log Removal Credit Increase contact time Real-time LRV calculation Visibility of LRV to operators Increase confidence in water safety

Be Riahi

<section-header>

38

39

Pre- and Post-Clearwell: free chlorine monitoring results

Two monitoring technologies

Soldier Canyon: Post-chlorination monitoring results (3/13/2019 through 3/28/2020)

** Since 7/18/19, at every 2.5 min

41

Making a Selection

4-step process for choosing the right analyzer technology

Step 1 (Compare Basic Specifications)

Does the measurement range cover your expected values?

Does the specified pH range fit your application? **Step 2** (Evaluate Technology Key Differentiators)

What is preferred for your situation – uncompromised accuracy or speed of response? **Step 3** (Consider Detailed Instrumentation Specifications)

What nuances of the specs are most valuable for your application? Step 4 (Keys to Application Success)

E.g. reagents discharge vs. necessity to calibrate - can your utility meet these requirements?

HACH Be Right"

Carlos Williams

Applications Development Manager – Hach 970.663.1377 x2181 <u>cawillia@hach.com</u> CT and log inactivation are influenced by *multiple factors*

CT requirements can differ from state to state, but minimum CT and log removal values come from SWTR

Live log reduction calculations can provide operators with *real-time data to make process adjustments whenever needed*

Evaluate the technology and *choose the right analyzer* for monitoring log inactivation and CT

Presenter Biographies

Travis Scurlock

Water Resources Senior Lead Operator, Parker Water & Sanitation District (303) 841-4627

tscurlock@pwsd.org

Travis Scurlock is the District's Senior Water Lead Operator for Water Resources, he has worked for PWSD for over fourteen years. In that time, Travis held positions in both water and wastewater as an operator and a lead operator. Travis not only is an excellent technical operator in the field but exemplifies the District value of outstanding customer service. Travis was nominated to receive the RMSAWWA Outstanding Distribution System Operator award due in large part to his contribution to the Water Resources Consolidation Project (WRCP). His input and leadership was instrumental in the successful switch from free chlorine to chloramines The RMSAWWA Outstanding Distribution System Operator award covers New Mexico, Colorado and Wyoming

Jacob Stephani

Technical Coordinator – Soldier Canyon Water Treatment Authority (970) 482-3143

jstephani@soldiercanyon.com

10 years in the Drinking Water Industry

Entered the Drinking Water Industry 10 years ago as a Plant Operator in NY, and now is the Technical Coordinator at Soldier Canyon Treatment Plant.

Greg Fleck

Global Product Manager –

Hach 970.663.1377 x2353 greg.fleck@hach.com

Greg Fleck is a Global Product Manager at Hach Company and is based in Loveland, Colorado, A member of the Municipal Drinking Water team, Greg looks for ways to improve Hach's products and explore new applications in Turbidity, Disinfection, and other core drinking water parameters. While working for Hach's parent company over the past 7 years he has held roles supporting and manufacturing water quality and medical products. Greg holds Bachelor's and Master's degrees in Civil Engineering from the University of Maryland.

Dr Vadim Malkov

Principal Product Applications Manager – Hach +1 970 663 1377 x2689 vmalkov@hach.com

Vadim B. Malkov (PhD Chemistry) joined Hach Company as an R&D chemist in 2002 and moved over to the business organization in 2008. During his tenure at Hach, Vadim has led and participated in development of several process analyzers, methods and applications. Dr Malkov has published many papers in scientific and professional journals and presented results of his work at multiple conferences in the United States and abroad. Vadim Malkov is currently working at Hach as a Principal Product Applications Manager for Drinking Water with focus on turbidity and disinfection

Carlos Williams

Applications Development Manager – Hach 970.663.1377 x2181 cawillia@hach.com

Carlos Williams has worked in analytical chemistry for the last 17 years in process and laboratory settings. In his time at Hach he has had the privilege of traveling across North America as well as internationally to teach and lecture on topics such instrumentation, data analysis, and chemistry to help organizations get the most out of their analytical tools. He is currently a Colorado Certified Water Professional, Carlos is based just south of Loveland, Colorado.

CE Credits (CEUs) and Professional Development Hours (PDHs):

AWWA awards webinar attendees CEUs. If you wish to take advantage of the opportunity to earn CEUs, visit www.awwa.org/credits

47

Within 30 days of the webinar, login to www.awwa.org or register on the website. If you are having problems, please email educationservices@awwa.org

Once logged in, go to:

- My Account
- My Transcript Information

To print your official transcript, click Print list To print certificates, click Download certificate

