

RESEARCH WEBINAR SPONSORS

AWWA's Joint Section Research Committee

2

Please consider the environment before printing.

WEBINAR MODERATOR

Chris Owen

Director of Water and Reuse Innovations

Hazen and Sawyer

Chris is the Director of Water and Reuse Innovations for Hazen and Sawyer. She has 29 years of experience in water quality, research, treatment and regulatory compliance. Her utility roles have included regulatory compliance, research, laboratory management, source water assessment and protection, and distribution system issues. Research work included investigations of UF/MF/RO membranes, online monitoring, total coliform occurrence, enhanced coagulation, biofiltration, distribution system, corrosion, biostability, ion exchange, chloramine chemistry and stability, contaminants of emerging concern, and algal toxins. She is active in regulatory issues at the state and federal levels, promoting utility concerns and science-based decisions. She served on the USEPA SAB for Drinking Water and the USEPA NACEPT.

She is an active member of the American Water Works Association (AWWA), serving as a Trustee and the current Chair of the Water Science and Research Division. She is a Trustee for WateReuse FL and the President of the Board of Directors for the American Membrane Technology Association. She has been active in the Water Research Foundation (WRF) and the WateReuse Foundation for more than 20 years.

4

ENHANCE YOUR WEBINAR EXPERIENCE

- Close
 - ✓ Email Programs
 - ✓ Instant messengers
 - ✓ Other programs not in use
- GoToWebinar Support

https://support.logmeininc.com/gotowebinar?labelid=4a17cd95

3

WEBINAR SURVEY

- · Immediately upon closing the webinar
 - ➢ Survey window opens
 - ≻ Thank you!

PRODUCTS OR SERVICES DISCLAIMER

The mention of specific products or services in this webinar does not represent AWWA endorsement, nor do the opinions expressed in it necessarily reflect the views of AWWA

AWWA does not endorse or approve products or services

PANEL OF EXPERTS

Tarrah Henrie Senior Scientist Corona Environmental

Elizabeth Crafton-Nelson, PhD Assistant Engineer Hazen & Sawyer

Craig Adams, PhD, PE, F. ASCE Oliver Parks Professor Saint Louis University

AGENDA

I.	Cyanotoxin Research Update	Tarrah Henrie
II.	Advancements in Algaecide Products and Approach for Harmful Algal Bloom Management	Elizabeth Crafton-Nelson
III.	Hazen-Adams CyanoTOX Tool to Assist Utilities with	Craig Adams

7

Complex Cyanotoxin Issues

ASK THE EXPERTS

Tarrah Henrie Corona Environmental

Elizabeth Crafton-Nelson, PhD Hazen & Sawyer

Craig Adams, PhD, PE, F. ASCE Saint Louis University

Enter your **question** into the **question pane** at the lower right-hand side of the screen.

Please specify to whom you are addressing the question.

CYANOTOXIN RESEARCH UPDATE

Tarrah Henrie Senior Scientist Corona Environmental Consulting

10

10

PURPOSE

- · Introduce the topic of cyanobacteria and cyanotoxins
- · Show case studies of utilities managing cyanotoxins

LEARNING OBJECTIVES

As a result of this presentation you will learn about:

- Cyanobacterial blooms and cyanotoxins
- · Management strategies for cyanobacteria
- · Recommendations for monitoring and evaluation of treatment options

PRESENTATION OUTLINE

- Background
- Occurrence overview
 - Cyanobacteria, T&O, cyanotoxins
- Management strategies
 - Comprehensive monitoring
 - Source water control
 - Treatment plant control
- · Recommendations for utilities

CREDIT

Many of these slides were developed by Amlan Ghosh, with Corona Environmental Consulting

Please consider the environment before printing.

		Algae	Cyanobacteria
ALGAE VS.	Cell type	Eukaryotic	Bacteria (Prokaryotic)
CYANOBACTERIA	Photosynthesis?	Yes	Yes
	MIB and Geosmin?	No	Sometimes
	Cyanotoxins?	No	Sometimes
	Eukaryote Nucleolis Nucleus	Prokaryote hondria Nucleo Ribosomes Cell Men	oid Capsule Flagellum Cell Wall bbrane
			15

15

HOW DOES IT LOOK?

Green Algae & Duckweed

Spirogyra bloom

http://epa.ohio.gov/portals/28/Documents/HAB/BloomCharacterizationGuide-DRAFT.pdf

17

USEPA, 2018

18

18

17

Cyanobacteria Strains & Associated Toxins													
						Суа	nobac	teria T	axa				
 Strains produce different toxins at different amounts 	Adapted from : Peerl and Otten 2013. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microbial Ecology 65:4 995-1010	na	zomenon	capsa	occus	ospermopsis	hrix	opedia	₇ stis	lyngbya	othrix	nabaena	ria
Toxins can have		bae	ine	ano	000	mdr	mot	rism	roc	akte	akte	nda	hula
multiple variants	Toxin	Ana	Aph	Aph	Ŀ.	Cyli	Lim	Mer	Mic	Plai	Pla	Pse	Nod
Example: Over 80 known	Aeruginosin								Х		Х		
microcystin variants	Anatoxin-a/homoanatoxin-a	х	х			х				х	х		
	Anatoxin-a(S)	Х											
	Aplysiatoxins									х			
	BMAA	Х	х			Х			Х	Х	Х		
Ioxins analyzed by	Cyanopeptolin	х							х		х		
(E44 and E4E)	Cylindrospermopsin	Х	Х			Х							
(544 and 545)	Jamaicamides									х			
	Lyngbyatoxin									Х			
1	Microcystin	х	х	х		х	х	х	х		х	х	
(Nodularin												х
4	Saxitoxin	х	х			х					х		

USEPA, 2016

19

WHAT ARE CONGENERS?

- Over 90 Microcystins
- Microcystin LR, YR, RR and LA further EPA research
- Microcystin-LR is the most common

20

22

CYANOTOXINS TIMELINE

- · August 2014 Toledo cyanotoxin event
- · 2015: USEPA released health advisories for two cyanotoxins
- 2018 2020: 10 cyanotoxins included as part of Unregulated Contaminant Monitoring Rule 4 (UCMR4)

Cyanotoxin	10-day Health Advisory (µg/L)					
		School-age and				
	Bottle-fed Infants	Older				
Microcystin-LR	0.3	1.6				
Cylindrospermopsin	0.7	3				

22

.

NATIONWIDE RESULTS

- From UCMR4
- Data collected in 2018 and 2019

Cyanotoxin	Results	Count of samples	Range (ug/L)	Average (ug/L)	Count of samples	EPA Heath Advisory - Sensitive
Anatoxin-a	Non-detect	21,464	0.03 - 13.22	0.23	104	None
Cylindrospermopsin	Non-detect	21,567	0.09 - 0.88	0.26	11	0.7
Microcystin congeners	Non-detect	18			0	
Total Microcystin	Non-detect	21,277	0.32 - 0.79	0.43	6	0.3
Nodularin	Non-detect	3			0	
Total		64,329			121	

23

23

MANAGEMENT STRATEGIES

Utility 3, CO

MONITORING

- Why?
 - Know your water, develop and track indicators, identify excursions, early warning
- What?
 - Algae, indicators, T&O, cyanotoxins, general water quality
- Where?
 - Source water, treatment processes, facility specific
- When?
 - Baseline monitoring, enhanced monitoring based on triggers
- How?
 - Field, laboratory, sensory
 - Continuous, online

25

WATER QUALITY PARAMETERS

Water Quality Group	Parameter				
	Temperature				
	pH, Alkalinity				
General water quality	Turbidity				
	TOC, UV-254				
	Dissolved Oxygen				
	Phycocyanin				
	Chlorophyll-a				
	Identification				
Cyanobacteria related	Enumeration				
parameters	Sensory Analysis 1 (TON)				
	Total Nitrogen				
	Nitrogen Speciation (nitrate, nitrite, ammonia)				
	Total Phosphorus				
	MIB				
T&O, Cyanotoxins	Geosmin				
	Cyanotoxins (10 listed in UCMR 4)				

26

MONITORING FREQUENCIES

Baseline

Trigger(s)		Routine Monitoring								
	Parameter	Frequency	Location 1	Location 2	Location 3					
	Temperature	Daily		Reservoirs						
	рН	Daily		Reservoirs						
	Alkalinity	Daily		Reservoirs						
	Turbidity	Daily		Reservoirs						
luna 1 da	Phycocyanin	Daily		Reservoirs						
June 1 to	Chlorophyll-a	Daily		Reservoirs						
September 50	Dissolved Oxygen	Daily		Reservoirs						
	MIB/Geosmin	Weekly		Reservoirs						
	Algae ID/En	Monthly		Reservoirs						
	тос	Monthly		Reservoirs						
	Total Nitrogen	Monthly		Reservoirs						
	Total Phosphorus	Monthly		Reservoirs						

MONITORING FREQUENCIES

Alert Level

Trigger(s)		Alert Level Monitoring								
ALL must be met	Parameter	Frequency	Location 1	Location 2	Location 3					
Phycocyanin	Temperature	Daily	Bayou	Reservoirs						
> 10 µg/L	pН	Daily	Bayou	Reservoirs						
	Alkalinity	Daily	Bayou	Reservoirs						
	Turbidity	Daily	Bayou	Reservoirs						
AND	Phycocyanin	2/day	Bayou	Reservoirs						
Chlorophyll-a	Chlorophyll-a	2/day	Bayou	Reservoirs						
> 2.2 μg/L	Dissolved Oxygen	Daily	Bayou	Reservoirs						
AND	MIB/Geosmin	1/week*	Bayou	Reservoirs	Filter (combined					
Minuel sizes of	Algae ID/En	Weekly	Bayou	Reservoirs						
visual signs of	тос	Monthly	Bayou	Reservoirs						
algai bioom	Total Nitrogen	Monthly	Bayou	Reservoirs						
For 2 days	Total Phosphorus	Monthly	Bayou	Reservoirs						

MONITORING FREQUENCIES

Action Level

Trigger(s)		Action Level Monitoring								
ALL must be met	Parameter	Frequency	Location 1	Location 2	Location 3					
Phycocyanin	Temperature	2/day	Bayou	Reservoirs						
> 25 μg/L	pН	Daily	Bayou	Reservoirs						
	Alkalinity	Daily	Bayou	Reservoirs						
	Turbidity	Daily	Bayou	Reservoirs						
AND	Phycocyanin	2/day	Bayou	Reservoirs						
Chlorophyll-a	Chlorophyll-a	2/day	Bayou	Reservoirs						
> 2.2 µg/L	Dissolved Oxygen	2/day	Bayou	Reservoirs						
AND	MIB/Geosmin	3/week	Bayou	Reservoirs	Filter					
Intense signs of	Algae ID/En	3/week	Bayou	Reservoirs	Filter					
algal bloom	тос	Weekly	Bayou	Reservoirs						
	Total Nitrogen	Weekly	Bayou	Reservoirs						
For 2 days	Total Phosphorus	Weekly	Bayou	Reservoirs						

30

MONITORING METHODS

Algae

32

MONITORING METHODS

Indicators (Chlorophyll-a, Phycocyanin)

Please consider the environment before printing.

SOURCE WATER CONTROL

Utility 2 Disk Aeration System

Utility 3 Solar Mixers

SOURCE WATER CONTROL

Control Strategy	Treatment Technology		
Operational optimization	Temporary use of alternate source(s)		
operational optimization	Screening of intake depths		
	Copper based algaecide		
Chemical application	Non-copper algaecide (e.g. peroxide)		
	Nutrient removal chemicals (e.g. alum)		
	Surface mixing/ circulation		
Physical control	Hypolimnetic aeration (line diffusers, disk		
Physical control	diffusers, layer aeration)		
	Dissolved oxygen augmentation (e.g.		
	Speece Cone)		
	Ultrasonication		
Emerging technologies	White amur fish (grass carp)		
Watershed management	Land acquisition (forestation), wetlands		
Watersneu management	Reduce wastewater influence to source		

SOURCE WATER CONTROL

- Consider:
 - Water quality objectives
 - Site constraints
 - Utility resources
 - Costs (life cycle)

INSIDE THE WATER TREATMENT PLANT

38

Please consider the environment before printing.

INSIDE THE WATER TREATMENT PLANT

SEPA Ti	reatment Issues
Powdered Activated Carbon (PAC)	Removes some HAB toxins better than others
	Choosing the correct dose quickly
	Reduced filter times and sludge disposal
Granular Activated Carbon (GAC)	Removes some HAB toxins better than others
	Removal depends on amount of preloading
	High capital cost
	Reactivation/removal frequency – cost and operation
UV (After treatment)	Needed UV doses are much higher than that required
	for 2-log disinfection of <i>Cryptosporidium</i> = 5.8 mJ/cm ² , <i>Giardia</i> = 5.2 mJ/cm ² , viruses = 100 mJ/cm ²
	25

40

UTILITY 1: CYANOTOXINS EVALUATION

- Test removal of all 10 UCMR4 cyanotoxins
- Test simultaneously in presence of T&O compounds (MIB)
- Five pre-approved PACs tested
- Simulate all other WTP processes for routine operations

PACS USED IN JAR TESTS

PAC Product	PAC A	PAC B	PAC C	PAC D	PAC E
Size Distribution	Less than 150 µm: 99%	Less than 45 μm: 65%	Less than 150 µm: 99%	Less than 150 µm: 99%	Less than 45 µm: 90%
	Less than 75 µm: 95%		Less than 75 µm: 95%	Less than 75 µm: 95%	
	Less than 45 μm: 90%		Less than 45 µm: 90%	Less than 45 µm: 90%	
Density	0.51 g/mL; 32 lb/ft ³	0.51 g/mL; 32 lb/ft ³	0.51 g/mL; 32 lb/ft ³	0.4 - 0.7 g/mL	0.4 - 0.7 g/mL
Iodine Number	500 mg/g	500 mg/g	800 mg/g	1000 mg/g	1000 mg/g

41

CYANOTOXINS & MIB CONCENTRATIONS

Cyanotoxin	Target Initial Concentration (µg/L)
MC-LR	3.1
MC-RR	3.1
MC-YR	3.1
MC-LA	3.1
MC-LF	3.1
MC-LY	3.1
Total Microcystin	18.6
Anatoxin	10
Nodularin	6.2
Cylindrospermopsin	6.2
2-MIB	0.1

JAR TEST RESULTS

Product ID	PAC A	PAC C	PAC D	PAC E
Microcystin-RR	27%	80%	65%	82%
Microcystin-YR	26%	78%	45%	80%
Microcystin-LR	35%	80%	51%	68%
Microcystin-LA	33%	82%	44%	82%
Microcystin-LY	31%	84%	60%	81%
Microcystin-LF	39%	79%	56%	85%
Total Microcystin	31%	81%	54%	80%
Nodularin	18%	80%	51%	81%
Anatoxin	24%	35%	44%	55%
Cylindrospermopsin	60%	85%	75%	91%
Average	32%	76%	54%	79%

PAC dose is 50 mg/L

43

43

JAR TEST RESULTS

Product ID	PAC A	PAC C	PAC D	PAC E
Microcystin-RR	27%	80%	65%	82%
Microcystin-YR	26%	78%	45%	80%
Microcystin-LR	35%	80%	51%	68%
Microcystin-LA	33%	82%	44%	82%
Microcystin-LY	31%	84%	60%	81%
Microcystin-LF	39%	79%	56%	85%
Total Microcystin	31%	81%	54%	80%

PAC dose is 50 mg/L

JAR TEST RESULTS

Product ID	PAC A	PAC C	PAC D	PAC E
Nodularin	18%	80%	51%	81%
Anatoxin	24%	35%	44%	55%
Cylindrospermopsin	60%	85%	75%	91%

PAC dose is 50 mg/L

45

COMPARISON OF ELISA VS LC/MS/MS

46

REMOVAL OF T&O VS. CYANOTOXINS

PAC dose is 50 mg/L

47

SUMMARY

- Monitor:
 - Know your water, develop and track indicators, identify excursions, early warning
- · Source water control:
 - · Numerous strategies available
 - · Site specific, driven by water quality objectives

47

SUMMARY

- In plant treatment:
 - · Consider both intracellular and extracellular cyanotoxins
 - · Oxidants: risk of cell lysis and release of toxins
 - · PAC/ GAC: effectiveness varies between toxins
 - Relative performance of PACs for toxin removal similar to relative performance for T&O removal

49

ASK THE EXPERTS

Tarrah Henrie Corona Environmental

Elizabeth Crafton-Nelson, PhD Hazen & Sawyer

Craig Adams, PhD, PE, F. ASCE Saint Louis University

Enter your **question** into the **question pane** at the lower right-hand side of the screen.

Please specify to whom you are addressing the question.

ADVANCEMENTS IN ALGAECIDE PRODUCTS AND APPROACH FOR HARMFUL ALGAL BLOOM MANAGEMENT

Elizabeth Crafton-Nelson, PhD Assistant Engineer Hazen and Sawyer

Hazen

51

PURPOSE

52

54

OVERVIEW

Products

Additional products developed

Reduce copper added

Alternative products

Selective treatment

Target bloom-forming organism

Application Approach

Injection at sedimentwater interface

Partial water column treatments

Targeted sport treatments

57

High-yield and accumulation areas

Shifting dominance

HYDROGEN PEROXIDE PRODUCTS

- PAK27 & GreenClean Pro
 - Granular
 - Active ingredient sodium carbonate peroxyhydrate (85%)
 - 27% Hydrogen peroxide
- GreenClean Liquid 5.0
 - Liquid
 - 23% Hydrogen peroxide
 - 5.3% Peroxyacetic acid

59

59

HYDROGEN PEROXIDE PRODUCTS

- · Alternative to copper products
- · Selectively target cyanobacteria
 - Toxic HABs
 - Geosmin/MIB
- · Intent differs from copper-based products
 - Prevent
 - 'Injury' not 'kill'

WHY USE HYDROGEN PEROXIDE?

- · Target cyanobacteria with hydrogen peroxide
- · HABs in surface water are characteristically cyanobacteria-dominated
- · Cyanobacteria are the only known source of cyanotoxins
- Typically the source of MIB/geosmin
 - Fungi, actinomycetes

WHY USE HYDROGEN PEROXIDE?

- · Cyanobacteria are prokaryotic
- · Mehler reaction
- · ROS-eliminating enzymes
- Ascorbate peroxidase (APX)

Image: Curien et al. 2016 62 62

WHY USE HYDROGEN PEROXIDE?

- · Changes in circadian gene expression pattern
- · Impacts both metabolic and physiological function
 - Controls cell division
 - Nitrogen fixation
 - Carbon uptake
 - Biosynthesis of secondary metabolites
 - T&O
 - Cyanotoxins
 - Photosynthesis (reduced photosynthetic viability)

WHY USE HYDROGEN PEROXIDE?

- · Downregulates microcystin synthesis
- Reduced transcription of mcyA, mcyD, mcyH gene clusters

Microcystin gene (mcy) cluster

Image: Rastogi et al. 2015

64

WHY USE HYDROGEN PEROXIDE?

- · Induces the least amount of cell lysis
 - Copper products
- · Intended to reduce photosynthetic viability of the cells
- Impairs the cyanobacteria community, allowing eukaryotic algae and other bacteria to compete

WHY USE HYDROGEN PEROXIDE?

- · No residual or accumulation
- · Terminal end products are oxygen and water
- No toxicity induced mutation

Please consider the environment before printing.

Better protect non-target organisms

66

EXPERIMENTAL CONDITIONS

- · Initial cyanobacteria population: 40,000 cells/mL
- Time intervals: baseline, 1.5 hours, 2, 7, and 14 days after treatment
 - Treatment impact vs. rebound
- Three doses of PAK27®
 - Full Dose: 12.4 mg/L H_2O_2
 - Half Dose: 6.2 mg/L H_2O_2
 - Quarter Dose: 3.1 mg/L $\rm H_2O_2$
- Negative controls
- · Each condition assessed in triplicates

EXPERIMENTAL METHODS

- Water Quality Sonde (YSI 6600 V2)
 Temp (°C), DO (mg/L), TDS (g/L), Chl-a (µg/L), cyanobacteria (cells/mL)
- Genera-based population composition
 Palmer-Maloney counting chamber (400x)
- Total microcystin concentration (ELISA)
- qPCR Multiplex assay (16s rRNA, mcyE, sxtA, cyrA)

69

PAK27®

- Cyanobacteria
- Baseline to 2-days
- Dose trend

Percent Change in Cyanobacteria			
Dose	Dose Baseline - 2 days		
Full	-89% ★		
Half	-87% ★		
Quarter	-87% 🛨		
Control	- 21%		

70

PAK27®

- Cyanobacteria
- Rebound
- 7 to 14 days after treatment

Percent Change in Cyanobacteria				
Dose 7 - 14 days				
-44%				
-49%				
-34%				
Control -47%				

71

71

PAK27®

- Extracellular microcystin
- · Baseline to 2 days

Percent Change in Extracellular Microcystin				
Dose	ose Baseline - 2 days			
Full	< 0.10 (MDL) - 0.21 ± 0.02			
Half	< 0.10 (MDL) - 0.17 ± 0.04			
Quarter	< 0.10 (MDL) - 0.14 ± 0.03			
Control	< 0.10 (MDL)			

MDL: 0.1 μg/L PQL: 0.3 μg/L

72

CUTRINE ULTRA

Baseline - 2 days

-**91%**

-64%

-53%

+2%

★

★

★

· Cyanobacteria

Dose

Full

Half

Quarter

Control

· Baseline to 2 days

73

73

CUTRINE ULTRA

- Cyanobacteria
- 7 to 14 days after treatment

Percent Change in Cyanobacteria				
Dose	7 - 14 days			
Full	315%			
Half	1,414% *			
Quarter	827% ★			
Control	-61%			

74

74

CUTRINE ULTRA

- Extracellular microcystin
- · Baseline to 2 days

Percent Change in					
Extracellular Microcystin					
Dose	Baseline - 2 days				
Full	254%	*			
Half	177%	*			
Quarter	171%	*			
Control	Control -27% ★				
	•				

75

76

Please consider the environment before printing.

75

FULL SEASON MANAGEMENT

77

SUMMARY

- · Advances provide more options for short-term management
- · Successful short-term management provides time and relief
- · Long-term management techniques need to be implemented for prevention

78

77

ASK THE EXPERTS

Tarrah Henrie Corona Environmental

Elizabeth Crafton-Nelson, PhD Hazen & Sawyer

Craig Adams, PhD, PE, F. ASCE Saint Louis University

79

Enter your **question** into the **question pane** at the lower right-hand side of the screen.

Please specify to whom you are addressing the question.

HAZEN-ADAMS CYANOTOX TOOL TO ASSIST UTILITIES WITH COMPLEX CYANOTOXIN ISSUES

Speaker: Craig Adams, Ph.D., P.E., F. ASCE Oliver Parks Professor Saint Louis University

Co-Developer: Ben Stanford, Ph.D., P.E. Associate Vice President Hazen and Sawyer

80

ACKNOWLEDGEMENTS

- CyanoTOX was **conceived and developed** by Craig Adams (SLU) and Ben Stanford (Hazen and Sawyer) with significant **contributions** from Elisa Arevalo, Erik Rosenfeldt, Elizabeth Crafton and others
- The development of Hazen-Adams CyanoTox program was **funded** by the American Water Works Association and Water Research Foundation
- · Special thanks for reviews and input to:
 - AWWA Cyanotoxin workgroup
 - Bob Raczko (United Water), Keith Cartnick (United Water), and Erik Rosenfeldt (Hazen and Sawyer), Steve Via (AWWA), Alan Roberson (AWWA), Adam Carpenter (AWWA), Djanette Khiari (WaterRF)

81

American Water Works					
Association					
edicated to the World's Most Importan	Resource [®]		(
tembership & volunteering 🔻	Events & Education	Resources & Tools + Pro	ressional Development 👻	Publications Polic	cy & Advocacy 🔻
Technical Resources	Events & Education	Policy & Advocacy	Get Involved	Related Resources	
AWWA Manuals					
M57 Algae: Source to Treatme	ent				
Additional Decourses					
Additional Resources					
CvanoTOX® Version 3.0 is an	ovidation calculator designed	to help utilities evaluate how treatme	nt adjustments (such as nH o	vidant dose and contact time) m	nav influence
CyanoTOX® Version 3.0 is an degradation of individual cyar	oxidation calculator designed otoxins and some groups of c	to help utilities evaluate how treatme yanotoxins. The latest version mainta	nt adjustments (such as pH, c ins the ability to model the ox	xidant dose, and contact time) m idative removal of extracellular to	nay influence oxins under
CyanoTOX® Version 3.0 is an degradation of individual cyar various conditions (3 toxins, 5	oxidation calculator designed otoxins and some groups of c oxidants, pH, temp, etc). New	to help utilities evaluate how treatme yanotoxins. The latest version mainta in this version is an additional modul	nt adjustments (such as pH, c ins the ability to model the ox e to model intracellular and ex	xidant dose, and contact time) n idative removal of extracellular to tracellular toxins throughout a w	nay influence oxins under vater treatment
CyanoTOX® Version 3.0 is an degradation of individual cyar various conditions (3 toxins, 5 plant. New capabilities include	oxidation calculator designed otoxins and some groups of c oxidants, pH, temp, etc). New e release of intracellular toxins,	to help utilities evaluate how treatme yanotoxins. The latest version mainta in this version is an additional modul , three zones of oxidation, PAC carbor	nt adjustments (such as pH, c ins the ability to model the ox e to model intracellular and e n adsorption, settling of solids	xidant dose, and contact time) n idative removal of extracellular to tracellular toxins throughout a w , biofiltration/GAC and other feat	nay influence oxins under vater treatment tures.
CyanoTOX® Version 3.0 is an degradation of individual cyar various conditions (3 toxins, 5 plant. New capabilities includ Managing Cyanotoxins in Drin	oxidation calculator designed otoxins and some groups of cy oxidants, pH, temp, etc). New e release of intracellular toxins, king Water: A Technical Guidar	to help utilities evaluate how treatme yanotoxins. The latest version mainta in this version is an additional moduli , three zones of oxidation, PAC carbor nce Manual for Drinking Water Profes	nt adjustments (such as pH, c ins the ability to model the ox e to model intracellular and ex a adsorption, settling of solids sionals	xidant dose, and contact time) n idative removal of extracellular to tracellular toxins throughout a w , biofiltration/GAC and other feat	nay influence oxins under vater treatment tures.
CyanoTOX® Version 3.0 is an degradation of individual cyar various conditions (3 toxins, 5 plant. New capabilities includ Managing Cyanotoxins in Drin Water Utility Managers Guide	oxidation calculator designed otoxins and some groups of cj oxidants, pH, temp, etc). New e release of intracellular toxins, king Water: A Technical Guidar To Cyanotoxins	to help utilities evaluate how treatme yanotoxins. The latest version mainta in this version is an additional moduli , three zones of oxidation, PAC carbor nce Manual for Drinking Water Profes	nt adjustments (such as pH, c ins the ability to model the ox e to model intracellular and es n adsorption, settling of solids sionals	xidant dose, and contact time) m dative removal of extracellular to tracellular toxins throughout a w , biofiltration/GAC and other feat	nay influence oxins under vater treatment tures.
CyanoTOX® Version 3.0 is an degradation of individual cyar various conditions (3 toxins, 5 plant. New capabilities includ Managing Cyanotoxins in Drin Water Utility Managers Guide Cyanotoxins in US Drinking W	oxidation calculator designed otoxins and some groups of ci- oxidants, pH, temp, etc). New e release of intracellular toxins, king Water: A Technical Guidar To Cyanotoxins ater: Occurrence, Case Studies	to help utilities evaluate how treatme yanotoxins. The latest version mainta in this version is an additional moduli , three zones of oxidation, PAC carbor nce Manual for Drinking Water Profes s and State Approaches to Regulation	nt adjustments (such as pH, ins the ability to model the ox e to model intracellular and ex n adsorption, settling of solids sionals	xidant dose, and contact time) m idative removal of extracellular to tracellular toxins throughout a w , biofiltration/GAC and other feat	may influence oxins under vater treatment tures.
CyanoTOX® Version 3.0 is an degradation of individual cyar various conditions (3 toxins, 5 plant. New capabilities includ Managing Cyanotoxins in Drin Water Utility Managers Guide Cyanotoxins in US Drinking W Testing Protocols for Site-Spe	oxidation calculator designed otoxins and some groups of ci oxidants, pH, temp, etc). New e release of intracellular toxins, king Water: A Technical Guidar To Cyanotoxins ater: Occurrence, Case Studies cific Oxidation Assessments	to help utilities evaluate how treatme yanotoxins. The latest version mainta in this version is an additional moduli s, three zones of oxidation, PAC carbor nce Manual for Drinking Water Profes s and State Approaches to Regulation	nt adjustments (such as pH, ins the ability to model the ox to model intracellular and ex a adsorption, settling of solids sionals	xidant dose, and contact time) m idative removal of extracellular to tracellular toxins throughout a w , biofiltration/GAC and other feat	may influence oxins under vater treatment tures.
CyanoTOX® Version 3.0 is an degradation of individual cyar various conditions (3 toxins, 5 plant. New capabilities includ Managing Cyanotoxins in Drin Water Utility Managers Guide Cyanotoxins in US Drinking W Testing Protocols for Site-Spe Testing Protocols for Site-Spe Testing Protocols for Site-Spe Devedered Activated Carbon C	oxidation calculator designed otoxins and some groups of cr oxidants, pH, temp, etc). New r release of intracellular toxins, king Water: A Technical Guidar To Cyanotoxins ter: Occurrence, Case Studies cific Oxidation Assessments cific Oxidation Assessments cific Oxidation Site-Specific Asse	to help utilities evaluate how treatme yanotoxins. The latest version mainta in this version is an additional modul , three zones of oxidation, PAC carbor nce Manual for Drinking Water Profes as and State Approaches to Regulation bon Assessments	nt adjustments (such as pH, ins the ability to model the ox e to model intracellular and ex n adsorption, settling of solids sionals	xidant dose, and contact time) m idative removal of extracellular to tracellular toxins throughout a w , biofiitration/GAC and other feat	may influence oxins under vater treatment tures.
Additional Resources CyanoTOX® Version 3.0 is an degradation of Individual cyar various conditions (3 toxins, 5 plant. New capabilities includ Managing Cyanotoxins in Drin Water Utility Managers Guide Cyanotoxins in US Drinking W Testing Protocols for Site-Spe Testing Protocols for Site-Spe Powdered Activated Carbon C AWWA testimony on 2015 Dri	oxidation calculator designed otoxins and some groups of cr oxidants, pH, temp, etc). New release of intracellular toxins, king Water: A Technical Guidar To Cyanotoxins ater: Occurrence, Case Studies cific Oxidation Assessments cific Oxidation Assessments cific Powdered Activated Carb alculator for Site-Specific Asse king Water Protection Act	to help utilities evaluate how treatme yanotoxins. The latest version mainta in this version is an additional modul , three zones of oxidation, PAC carbor nce Manual for Drinking Water Profes a and State Approaches to Regulation bon Assessments essments	nt adjustments (such as pH, ins the ability to model the ox e to model intracellular and ex n adsorption, settling of solide sionals	xidant dose, and contact time) m idative removal of extracellular to tracellular toxins throughout a w , biofiitration/GAC and other feat	may influence oxins under vater treatment tures.
CyanoTOX® Version 3.0 is an degradation of individual cyar various conditions (3 toxins, 5 plant. New capabilities includ Managing Cyanotoxins in Drin Water Utility Managers Guide Cyanotoxins in US Drinking W Testing Protocols for Site-Spe Powdered Activated Carbon C AWWA testimony on 2015 Dri Enactment of 2015 Drinking V	oxidation calculator designed otoxins and some groups of cr oxidants, pH, temp, etc). New release of intracellular toxins, king Water: A Technical Guidar To Cyanotoxins ater: Occurrence, Case Studies cific Oxidation Assessments cific Oxidation Assessments cific Powdered Activated Carb alculator for Site-Specific Asse king Water Protection Act /ater Protection Act	to help utilities evaluate how treatme yanotoxins. The latest version mainta in this version is an additional modul , three zones of oxidation, PAC carbor nce Manual for Drinking Water Profes a and State Approaches to Regulation bon Assessments essments	nt adjustments (such as pH, c ins the ability to model the ox e to model intracellular and es a dsorption, settling of solids sionals	xidant dose, and contact time) m idative removal of extracellular to tracellular toxins throughout a w , biofiltration/GAC and other feat	may influence oxins under vater treatment tures.

USES FOR HAZEN-ADAMS CYANOTOX (VER. 3.0) TOOL

- Protocol development for Hazardous Algal Blooms (HAB)
- · Sensitivity analysis (for design, operational and water quality parameters)
- · Plant design, upgrade and operations analysis
- · Creation of graphs and tables for reports
- · Real-time response to HAB/cyanotoxin events

CYANOTOX® VERSION 3.0

- An oxidation calculator designed to help utilities evaluate how treatment adjustments (such as pH, oxidant dose, and contact time) may influence degradation of individual cyanotoxins and some groups of cyanotoxins.
- The latest version (3.0)
 - Maintains the ability to model the oxidative removal of extracellular toxins under various conditions (3 toxins, 5 oxidants, pH, temp, etc).
 - Includes an additional module to model intracellular and extracellular toxins throughout a water treatment plant.
 - New capabilities include release of intracellular toxins, three zones of oxidation, PAC carbon adsorption, settling of solids, biofiltration/GAC and other features.
- Downloadable for free from
- <u>https://www.awwa.org/Resource-Tools/Resource-Topics/Source-Water-Protection/Cyanobacteria-Cyanotoxins</u>

CYANOTOX MODEL ORIGINALLY FOCUSED ON REMOVAL BY DISINFECTION AND/OR OXIDATION PROCESSES

-	Extracellular Cyanotoxins				
Process	Microcystin	Cylindro- spermopsin	Anatoxin A	Saxitoxin	
Free chlorine	Moderate (f(pH))	Effective	No, slow	Effective	
Permanganate	Effective	No	Moderate	No	
Monochloramine	Slow/no oxidation	No	No	??	
Ozone	Effective	Effective	Effective	No	
Chlorine dioxide	Slow/no oxidation	No	No	??	
AOP	Effective	Effective	Effective	??	
UV	No	No	??	??	

Adams, C. (2013) "Tailored Treatment of Cyanotoxins and Cyanobacteria: Oxidation, Adsorption and Other Technologies," Water Quality Technology Conference Workshop, Long Beach, CA, USA. (November 19, 2013)

87

HOW THE MODEL WORKS

- 1. Select Cyanotoxin of interest from drop down list:
 - Anatoxin-A, Microcystin-LR, Cylindrospermopsin, Microcystin-Mix
- 2. Input system parameters
- 3. Input initial cyanotoxin concentration
- Select final target concentration
- 5. Select oxidant of use
 - Free chlorine, ozone, permanganate, monochloramine, chlorine dioxide
- 6. Select model type

STEP 6. Go to your chosen calculator version: CT based or Dose-decay based (tabs in blue)

88

CT OR OXIDANT EXPOSURE

89

89

EXAMPLE 1. POST-FILTER OXIDATION OF MC-LR W/CHLORINE

EXAMPLE 2. POST-FILTER OXIDATION OF CYN W/CHLORINE

EXAMPLE 3. PRE-FILTER OXIDATION OF MC-LR W/KMNO₄

- Extracellular MC-LR in intake is 14 $\mu g/L$
- pH = 8.2; Temp = 15 °C
- Oxidant
 - Effective CT prior to filter = 150 mgmin/L
- Target MC-LR = 0.3 µg/L (Health Advisory)

Αυτουγ

**Effective CT includes all baffling effects for entry of either CT or Baffling x Residual x Contact Time

92

EXAMPLE 4. PRE-FILTER OXIDATION OF CYN W/KMNO₄

93

INTRACELLULAR VS. EXTRACELLULAR TOXINS

- Cyanotoxins entering a treatment plant may be:
 - Extracellular Outside the cyanobacterial cells in solution
 - Intracellular Within cyanobacterial cells
- Analysis
 - Total toxin
 - Lyse cell with freeze thaw
 - Extracellular
 - Prefiliter cells
 - Intracellular
 - ICT = TT ECT
- Oxidation can cause cells to lyse and release toxins slowly or rapidly

CYANOTOX 3.0 COMBINES TREATMENT, LYSING/LEAKING, ADSORPTION AND OTHER PROCESSES INTO A SINGLE MODULE

98

RESULTS ARE DISPLAYED GRAPHICALLY WITH DATA TABLES

EXAMPLE: LATE FALL BLOOM

15 Degrees C, pH is 8.2 intake to filter Minimum chlorine CT of 80 mg-min/L at pH 7.5 in clearwell (Finished Water)

- Develop a solution to bring MC-LR concentration to below 0.3 ug/L for a facility that is experiencing a bloom that creates an intake of water with 100 ug/L of total toxins but 70 ug/L as extracellular.
- The facility has the following capabilities and assumptions:
 - Permanganate can be added up to 10 mg-min/L CT at intake causing moderate release rate of intracellular toxin
 - PAC can be added with up to 50% removal
 - Free chlorine can be added in Rapid Mix (will assume 20 mg-min/L CT to prior to filter) causing slow release rate of intracellular toxin
 - Facility has no GAC capacity nor intentional biofiltration
 - Assume 20% of intracellular toxin is released from cells while sitting on filter bed
 - Assume 40% of cells settle out in clarifier

100

NO KMNO₄ IN INTAKE, NO PAC ADDED

101

10 MG-MIN/L KMNO₄ IN INTAKE, NO PAC ADDED

10 MG-MIN/L KMNO₄ IN INTAKE, PAC ADDED (W/ 50% TOXIN REMOVAL)

103

HAZEN-ADAMS CYANOTOX (VER. 3.0) TOOL TO ASSIST UTILITIES WITH COMPLEX CYANOTOXIN ISSUES

- HAB EVENT RESPONSE SOP DEVELOPMENT
- SENSITIVITY ANALYSIS
- PLANT DESIGN, UPGRADE AND OPERATIONS ANALYSIS
- CREATION OF GRAPHS AND TABLES FOR REPORTS
- REAL-TIME RESPONSE TO HAB/CYANOTOXIN EVENTS

Dr. Craig D. Adams Saint Louis University craig.adams@slu.edu

104

ASK THE EXPERTS

Tarrah Henrie Corona Environmental

Elizabeth Crafton-Nelson, PhD Hazen & Sawyer

Craig Adams, PhD, PE, F. ASCE Saint Louis University

Enter your **question** into the **question pane** at the lower right-hand side of the screen.

Please specify to whom you are addressing the question.

105

106

ADDITIONAL RESOURCES

- 2020 Water Quality Conference and Exposition: November 15 19, 2020
- M57 Algae: Source to Treatment
 - AWWA catalog no: 30057
- M68 Water Quality in Distribution Systems
 AWWA catalog no: 30068
- <u>AWWA Water Quality Resource Community</u>
- AWWA Cyanobacteria/Cyanotoxins Resource Community

UPCOMING WEBINARS

Aug 5 - Disinfection By-Products: Perspectives on Formation, Control and Mitigation

Oct 28 - A Closer Look at New and Not so New CEC's: PFAS, Microplastics and Solvents

Register for all Research webinar in one easy bundle

View the full 2020 schedule at awwa.org/webinars

107

"The wide-ranging original research published in AWWA Water Science contributes to improvements across the water industry. By publishing your innovations and advances in AWS, you are bettering the health and economy of communities around the world."

– Kenneth Mercer, Ph.D., EDITOR-IN-CHIEF

awwawaterscience.com

WILE WILE

ADVANCING THE WATER INDUSTRY

Original, Peer-Reviewed Research

Researchers who submit their work for peer review in AWS experience prompt decisions, expert feedback, rapid publication once accepted, and broad reach with other researchers and water professionals.

AWWA Water Science is the best place to submit your research to influence not just other researchers, but also stakeholders including water utility decision-makers, consultants, regulators, and manufacturers.

By publishing in AWWA Water Science, you advance the scholarship of the water industry. Your research enables other water professionals to stay informed of scientific and engineering innovations affecting safe water and inspires other cutting-edge research to further advance our progress.

107

THANK YOU FOR JOINING TODAY'S WEBINAR

- As part of your registration, you are entitled to an additional 30-day archive access of today's program.
- The Joint Section Resource Committee is always accepting new members! If you are interested in volunteering with AWWA please email <u>cbertoia@awwa.org</u>.
- · For more information on volunteering and other volunteer opportunities, visit our website.

109

109

PRESENTER BIOGRAPHY INFORMATION

Tarrah Henrie is a Senior Scientist, with Corona Environmental Consulting. She has over 16 years of experience solving inorganic and organic drinking water contaminant and regulatory compliance challenges for utilities. For the past several years Tarrah has been leading national and local cyanotoxin related projects.

Elizabeth Crafton is a Source Water Quality Engineer with Hazen and Sawyer. Elizabeth assists utilities across the country by working to increase their source water quality and treatability. Her source water management approach encompasses both short- and long-term practices for a wide variety of issues and risk assessment. Elizabeth received her PhD from the University of Akron where she studied cyanobacteria and cyanobacteria-dominated harmful algal blooms. Her PhD research was funded by the Harmful Algal Bloom Research Initiative through the Ohio Sea Grant. During her PhD research, Elizabeth worked alongside a phycologist and botanist with over 40 years of experience who was also a contributing author for the commonly referenced Freshwater Algae of North America textbook. The duel advisement from both the civil engineering and biology departments provided Elizabeth with an interdisciplinary training and education, which makes her a unique asset for assisting with source water management.

110

Dr. Adams is the Oliver Parks Professor of Environmental Engineering at Saint Louis University. His group conducts research with the aim to provide guidance on oxidation and sorption processes for drinking water contaminants including cyanotoxins, pharmaceuticals, taste-and-odor compounds, disinfection byproducts, and others. He also works teachs and works in developing nations on water, sanitation and hygiene (WASH) projects.

CE CREDITS (CEUS) AND PROFESSIONAL DEVELOPMENT HOURS (PDHS)

AWWA awards webinar attendees CEUs.

If you viewed this webinar live, you will receive a certificate through the AWWA account associated with the email address you used to register.

If you viewed this webinar through a group registration, contact your proctor to log your participation.

If you viewed this as an archive webinar, follow the directions included in your archive webinar email to log your participation.

Certificates will be available on your AWWA account within 30 days of the webinar

HOW TO PRINT YOUR CERTIFICATE OF COMPLETION

Within 30 days of the webinar, login to **www.awwa.org** or register on the website. If you are having problems, please email educationservices@awwa.org

Once logged in, go to:

- My Account (click on your name in the top right corner)
- My Transcripts
 - To print your official transcript, click Print list
 - To print individual certificates, click Download Certificate

RESEARCH WEBINAR SPONSORS

AWWA's Joint Section Research Committee

113

113