Corrosion Control May 22, 2020

Panel of Experts

France Lemieux Head of the Materials and Treatment Section Health Canada's Water and Air Quality Bureau

Bofu Li

Dalhousie University

Melinda Friedman President Confluence Engineering Group, LLC

7

<section-header><figure><figure><list-item><list-item>
 Phosphates in drinking water

 Phosphates in drinking water
 Phosphates are commonly used to control lead release to drinking water
 Fureman and Gagnon, 2016

Ortho-phosphate • Contains <u>one</u> PO₄³⁻ unit • Used for corrosion control (e.g., lead) • Cherews, 2017 • Contains <u>one</u> PO₄³⁻ unit

		@ .				
Experim	Experimental design					
	Distribution main	Corrosion inhibitor	LSL configuration			
	Cast iron	Sodium silicate	Partial LSL			
	Cast iron	Orthophosphate	Partial LSL			
	Cast iron	Zinc orthophosphate	Partial LSL			
	PVC	Sodium silicate	Partial LSL			
	PVC	Orthophosphate	Partial LSL			
	PVC	Zinc orthophosphate	Partial LSL			
	Cast iron	Sodium silicate	Full LSL			
	Cast iron	Orthophosphate	Full LSL			
	Cast iron	Zinc orthophosphate	Full LSL			
	PVC	Sodium silicate	Full LSL			
	PVC	Orthophosphate	Full LSL			
	PVC	Zinc orthophosphate	Full LSL			
		the source of		44		

Water Quality Comparison Summary at Hood Street					
Parameter	Surface Water	Groundwater			
Free Chlorine (mg/L)	0.7 - 1.1	0.9 - 2.2			
pH	8.1 - 8.2	7.4 - 7.8			
Alkalinity (mg/L CaCO3)	20 - 27	42 - 98			
DIC (mg/L C)	4 - 5	22 - 24			
Conductivity (µs/cm)	29 - 45	58 - 125			
Chloride (mg/L)	2 - 2.9	3.5 - 9.1			
Sulfate (mg/L)	1.7 - 8.3	5.1 - 12.3			
Iron (mg/L)	<0.005 - 0.04	<0.005 - 0.03			
Manganese (mg/L)	<0.0009 - 0.07	<0.0009 - 0.06			
	Source: Tacoma Water				

Corrosion Control May 22, 2020

69

Corrosion Control May 22, 2020

71

Corrosion Control May 22, 2020

75

Ask the Experts

France Lemieux Health Canada's Water and Air Quality Bureau

Bofu Li Dalhousie University

Melinda Friedman Confluence Engineering Group, LLC

Enter your **question** into the **question pane** at the lower right-hand side of the screen. Please specify to whom you are addressing the question.

76

