

Please consider the environment before printing.

5

PANEL OF EXPERTS

Phil Brandhuber Chair of the AWWA Inorganics Committee

Milt Larsen Project Manager and Process Engineer Kennedy/Jenks Consultants

John Tobiason Professor and Department Head of Civil and Environmental Engineering University of Massachusetts at Amherst

7

COMPARISON OF OXIDA	NTS		
Strong Oxidant	Characteristics		
Potassium Permanganate (KMnO ₄) Sodium Permanganate (NaMnO ₄)	 Easy to add Overdose causes "pink" water Adds Mn Some T&O control 		
Chlorine Dioxide (CIO ₂)	 Produce on-site Limited by chlorite by-product MCL Excellent disinfection, T&O control 		
Ozone (O ₃)	 Produce on-site Overdose may cause "pink" water Bromate formation possible Cannot reach very low Mn Excellent disinfection, T&O control 		
The rate of Mn(II) oxid moderate pH to form f	ation by <u>chlorine</u> is too slow at ilterable MnO _x (s) particles	17	

LEGACY Mn IN THE DISTRIBUTION SYSTEM Large amount of Mn can accumulate in distribution system Impacts stability of corrosion scales in distribution system and premise plumbing Release can cause (focus of WRF 4314) Colored water events Customer exposure to regulated metals that were associated with Mn Accumulation Mechanisms Co-precipitation Sedimentation Sorption Contaminants Desorption (Destabilization) Transformation Hydraulics Release Mecha Source: Hill et al., JAWWA, 2010 20

IMPACTS OF Mn ON LEAD CORROSION AND RELEASE

Observation	Impact	Reference
Promotes formation amorphous lead scale	Weakens scale increasing risk of lead release	Schock et al. 2014
Interferes with formation of lead phosphate scales	Reduces effectiveness of orthophosphate as lead corrosion inhibitor	Schock 2017
Acts as lead scavenger	Vector for movement of particulate lead	Dong et al. 2000
Mn(IV) acts as electron acceptor for during lead oxidation	Release soluble lead	Trueman et al. 2019
Mn(II) catalyzes Pb(II) oxidation to Pb(IV) in presence of Cl_2	Possible benefit(!) of Mn by promoting formation of PbO ₂	Pan et al. 2019
Use of polyphosphate to sequester Mn	Causes destabilization of lead scales and lead release	McNeill and Edwards 2004
		23

23

CURRENT N	In REGULATORY ENVIRONMEN	NT
Agency	Туре	Level (mg/L)
	Maximum Contaminant Level (MCL)	None
	Secondary Maximum Contaminant Level (SMCL)	0.05
USEPA	Life-time Health Advisory (HA) Adult	0.3
	1- and 10-Day HA Adult	1.0
	10-Day HA Child	0.3
Hoalth Canada	Maximum Acceptable Concentration (MAC)	0.12
Treatti Canada	Aesthetic Objective Level	0.02
World Health Organization	Aesthetic Guideline	0.05
European Union	Indicator Parameter	0.05
Mn Treatment Gu	idance Manual (WRF4373) recommendation - 0.01	5 to 0.02 mg/L
		24

35

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

37

39

41

Mn Removal Run 5		Clino + Pyro	Greensand	Silica Sand
 Target filter loading rate – 12 gpm/SF 	Mn	0.001	0.003	0.007
 Filter Run – 7.7 days UFRV – 108,000 to 120,000 gal/SF 	Sulfide	0.001	0.002	0.002
• Cl ₂ Dose – 5 mg/L	Free Cl ₂	1.02	0.75	1.22
	Total Cl ₂	2.14	>2.2	>2.2

Please consider the environment before printing.

47

GAC Adsorption & Catalytic Oxidation of Sulfide

- Precede chlorination
- Adsorbs sulfides
- Catalyzes oxidation of sulfides to sulfate
- Dissolved O₂ required
- Excess dissolved O₂ to maintain aerobic conditions
- 3 to 5 minute EBCT
- Reduced sulfide from 0.12 to 0.002 mg/L
- Backwash 8 to 10 gpm/SF
- Bacterial growth

Taste & Flavor	Water	Same Day	Next Day	
Test Scores	Bottled Water	3.9		
	City Hall	4.1		
	Maplewood (shops)	3.3		
	Pyrolusite	2.1	2.9	
	Greensand	2.7	2.9	
	Silica Sand	2.6	3.1	
	Clino + Pyro + Bisulfite + CI_2	1.9	3.8	
	GAC + Greensand	3.5	3.9	
			51	м
			51	

51

53

> **Creative Process Combinations for Simultaneous Control** of Mn, Fe and DBPs

> > John E. Tobiason, PhD, PE (NH), BCEE

(tobiason@umass.edu) Professor and Head, Department of Civil & Environmental Engineering University of Massachusetts at Amherst

AWWA Webinar

"Manganese: Exploring Treatment Technologies"

May 14, 2020

55

56

57

63

75

77

79

Please consider the environment before printing.

Mn (II)/Fe(II) and ?	Related Issues/Constraints
Mn or Fe only	Many options available, few constraints; metal level main factor in option selection
Mn(II) and Fe(II)	Oxidant demands; Fe(II) oxidized first/faster than Mn(II); additional solids; two electron acceptors for microbial oxidation; O ₂ & HOCl effective Fe(II) oxidants, but not for Mn(II)
NOM	Oxidant demand; impacts size & stability of ppt'd metal particles; may constrain how or if free chlorine is used in removal processes due to Cl-DBPs

Mn (II)/Fe(II) and ?	Related Issues/Constraints
Arsenic (As)	As(III) to As(V) by oxidant; As removal often by Fe-oxides; As usually an oxy-anion, not cation
Radionuclides	Sorption or IX processes may be affected by Mn(II) or Fe(II) presence
Hardness (Ca ²⁺ , Mg ²⁺)	Controls IX processes; ppt at high pH; sequestering chemical demand;
Multiple!	Complicated parallel oxidation/reduction, precipitation, and sorption processes! Have fun!

84

Objective	Constraints & Opportunities Related to Mn/Fe
Primary Disinfection	 Ozone and chlorine dioxide also effective dissolved Mn(II) oxidants; not true for free chlorine without an MnO_x(s) surface also. If free chlorine used, rational to combine with sorption & catalytic oxidation. UV: dissolved Fe/Mn potential sleeve foulants
Coagulation	Opportunity to destabilize & aggregate MnO _x (s) and Fe(OH) ₃ (s) particles created prior to coagulation. pH control objectives may enhance or hinder metal oxidation relative to raw water conditions. ~ no removal of dissolved Mn(II) or Fe(II)

Objective	Constraints & Opportunities Related to Mn/Fe
Intermediate Ozonation	Ozone after coag/floc/clarification great for decreased ozone demand. May have oxidation of Mn(II) to colloids, or even to Mn(VII) (pink water). Likely to require coagulant addition prior to media filtration.
Particle Removal	Method selection influences location and oxidant selection for creation of MnO _x (s) and Fe(OH) ₃ (s).
Non-Mn biofiltration	Essentially eliminates sorption and catalytic oxidation with free chlorine on biofilter media for Mn(II) removal

Oxidant	Reaction for Oxidation of Mn(II) to Mn(IV)	Stoichiometry (mg ox/mg Mn
O ₂ (aq)	$Mn^{2+} + \frac{1}{2}O_2 + H_2O \rightarrow MnO_2(s) + 2H^+$	0.29
$O_3 \rightarrow O_2(aq)$	$Mn^{2+} + O_3 + H_2O \rightarrow MnO_2(s) + O_2 + 2H^+$	0.88
Cl ₂ (HOCl)	$Mn^{2+} + HOCl + H_2O \rightarrow MnO_2(s) + Cl^+ + 3H^+$	1.30
$\begin{array}{c} \text{ClO}_2 \rightarrow \\ \text{ClO}_2^- \end{array}$	$Mn^{2+} + 2ClO_2 + 2H_2O \rightarrow MnO_2(s) + 2ClO_2 + 4H^+$	2.45
MnO ₄	$3Mn^{2+}+2MnO_4+2H_2O \rightarrow 5MnO_2(s)+4H^+$	1.44
KMnO ₄	As above for MnO ₄ -	1.92
NaMnO ₄	As above for MnO ₄ -	1.72
FeO ₄ ²⁻	$3Mn^{2+} + 2FeO_4^{2-} + 4H_2O \rightarrow 3MnO_2(s) + 2Fe(OH)_3(s) + 2H^+$	1.45

$O_2(aq)$ 2Fe ²⁺ + ¹ / ₂ O_2 + 5H ₂ $O \rightarrow$ 2Fe(OH) ₃ (s) + 4H ⁺	
	0.14
$O_3 \rightarrow O_2(aq)$ 2Fe ²⁺ + O_3 + 5H ₂ O \rightarrow 2Fe(OH) ₃ (s) + O_2 + 4H ⁺	0.43
Cl ₂ (HOCl) $2Fe^{2+} + HOCl + 5H_2O \rightarrow 2Fe(OH)_3(s) + Cl + 5H^+$	0.64
$\begin{array}{c} \text{ClO}_2 \rightarrow \\ \text{ClO}_2^- \end{array} \qquad $	1.20
$\frac{2}{MnO_4} \qquad 3Fe^{2+} + MnO_4 + 7H_2O \rightarrow 3Fe(OH)_3(s) + MnO_2(s) + 5H^+$	0.71
KMnO ₄ As above for MnO ₄ -	0.94
NaMnO ₄ As above for MnO ₄ -	0.85
FeO_4^{2-} $3Fe^{2+} + FeO_4^{2-} + 8H_2O \rightarrow 4Fe(OH)_3(s) + 4H^+$	0.71

89

